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Preface 

 

This book is intended especially for the laboratory work of 

Romanian students and fellowship students from abroad, attending the 

course of Dynamics of Structures and Machines Systems at Gheorghe 

Asachi Technical University of Iasi. 

This book is based on three scientific papers already published 

in scientific journals, as it follows: 
 

1. Horodinca, M., Seghedin, N., Carata, E., Filipoaia, C., Boca, M. 

Chitariu, D. (2013), Experimental Investigations of the Power 

Absorbed at Mechanical Resonance, Experimental Techniques, vol. 

30,  Issue 7, pp. 21-31, 2013. 

2. Horodinca, M., Seghedin, N., Carata, E., Boca, M., Filipoaia, C., 

Chitariu, D., (2014),  Dynamic Characterization of a Piezoelectric 

Actuated Cantilever Beam Using Energetic Parameters, Mechanics of 

Advanced Materials and Structures, vol. 21, issue 2, pp. 154-164, 

2014. 

3. Horodinca, M., (2013) A study on actuation power produced in an 

active damping system, Mechanical Systems and Signal processing, 

vol. 39, Issue 1-2, pp. 297-315, 2013. 
 

These aforementioned papers are reproduced here, though in a 

slightly revised form, each one representing the main part of a 

particular chapter in this book. 

 The primary reason that led to the writing of this book was that 

many unrevealed aspects of research behind every scientific paper 

published can be identified, aspects that prove useful for students 

undertaking learning and training. Therefore, an original and inovative 

aspect of this book can be observed.  At the end of each chapter all the 

necessary information and indications (about computer programs and 

data files acquired in experiments) are provided allowing students to 

fully understand the main theoretical and experimental elements of 

each paper. As a result, students can achieve the reconstruction of the 

key graphical representations (figures) related to each experiment from 
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the papers, with added focus on computer-aided data processing in 

Matlab. The computer programs and data files are available on the 

computers used by students in the laboratory or may be obtained upon 

request to the email address of the author (horodinca@tuiasi.ro or 

hmihaita@yahoo.com). At the end of each chapter a number of items 

for individual study and practical work on some experiments are 

proposed mainly based on computer assisted monitoring of actuation 

power flows in dynamics of structures. All the experimental features 

are fully available in the laboratory.  

Last but not least, there is also another reason for writing this book.  

This is an opportunity for Romanian students to become familiar with 

English scientific terminology used in dynamics of structures, to be in 

touch with new trends and challenges of their future profession.  

To conclude, I truly hope that upon reading this book students will be 

given the chance to improve their skills in experimental research as an 

added bonus to their theoretical training. 

 

 

Mihăiţă HORODINCĂ                                                     Iasi, June 2014 
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Paper 1 

 

EXPERIMENTAL INVESTIGATIONS 

OF THE POWER ABSORBED AT 

MECHANICAL RESONANCE 

 

ABSTRACT 

This paper describes the results of an investigation concerning the power 

absorbed at mechanical resonance for a single degree of freedom vibration system. 

Regarding the experimental purposes, the paper proposes a cantilever beam set-up 

actuated by a voice coil actuator and a computer aided power monitoring technique. 
The absorbed power is evaluated in a steady-state regime for different values of 

excitation frequency around the resonance (the first mode of vibration). The 

experimental results are afterwards compared to the theoretical predictions. In 

addition, some transient regimes generated by beat vibrations are explored. The 

negative absorbed power has been observed. The paper proposes an active vibration 

damping technique, based on actuation with a negative modal power supply. 

Keywords: Active vibration damping, mechanical power, measurement, 

negative power. 

 

 

1.1 INTRODUCTION 

 

In vibration engineering and experimental research, the usage of 

measurement and the study of the mechanical power transmitted by 
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electrodynamic excitation in mechanical structures, is an interesting 

option. The measurement and monitoring of the mechanical power 

flows can be useful in various research domains such as: dynamic 

behaviour identification and optimisation, active damping and vibration 

isolation, power harvesting, etc. 

Benassi [1] performs an investigation in dynamic behaviour 

identification and optimisation. He focuses on the suppression of the 

vibrations of plates by considering the equivalent impedance of power-

minimising vibration controllers. Mak [2] proposes an analytical study 

of the effects of the interaction between two coherent vibratory sources 

on the power transmitted to the floor. Mandal [3] presents a study on 

vibration power transmission in technically orthotropic plates. Reinji 

[4] obtains results researching the vibration energy transfer in a system 

of three plates separated by a small distance and connected at a few 

discrete points. 

In the active damping and vibration isolation domain, Howard 

[5] proposes a vibratory power transducer. He does so in order to 

reduce the vibration energy transmitted into a beam. Xie [6] presents a 

study on the vibration power transmission behaviour for a vibration 

isolation system.  

In the power harvesting domain, research is focused on 

alternative power sources for MEMS devices. According to Glynne-

Jones [7], Sari [8] and Stephen [9], micro generators (consisting of 

mass-spring system and magnet-coil generators) should be used to 

extract energy from a vibrating environment. The research is focused 

on the maximisation of the power delivered.  
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In scientific literature the measurement of the mechanical power 

is generally done by using transducers. Howard [5] uses a six axis 

transducer to measure the translation and rotational vibratory power. 

The time averaged vibratory mechanical power is calculated as half the 

real part of the force multiplied by the complex conjugate of the 

velocity. Renji [4] proposes a power measurement technique in a few 

discrete points of actuation using the excitation force and the real part 

of the driving point admittance. Mandal [3] proposes the measurement 

of power flow in orthotropic plates using the cross-spectrum of force 

and acceleration signal divided by angular frequency, or the cross-

spectrum of velocity and shear force signal. 

The main objective of this paper is to measure the absorbed 

average mechanical power of a vibratory system using the active power 

absorbed by the actuating system (a voice-coil actuator or 

electrodynamic actuator as well). The actuator is used as mechanical 

power source and loading sensor. A method for evaluating the electrical 

and mechanical characteristics of a voice coil actuator has already been 

developed by Fujii [10].  

This paper proposes a computer aided measurement technique 

of the average mechanical power delivered by a voice coil actuator and 

absorbed by a vibratory system. To prove the reliability of the 

measurement technique, a single degree of freedom mass-spring-

damper system is used as vibratory system excited at resonance. From a 

dynamic point of view, the resonant behaviour of the motion of a low 

damped mass-spring-damper mechanical system, excited by a harmonic 

force, is well known. At resonance, when the frequency of the exciting 
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force is close to the natural damped frequency, the amplitude of the 

motion of the mass increases significantly (tens or even hundreds of 

times) compared to the motion amplitude level when the system is 

excited by a very low frequency force.  

The vibration theory [11] indicates that at resonance the 

mechanical power absorbed by a mass-spring-damper system from the 

excitation source (actuator) increases, while a big amount of modal 

energy is stored inside.  

The proposed measurement technique is used on a cantilever 

beam experimental set-up, basically to validate the theoretical 

prediction on the absorbed average mechanical power at resonance. The 

paper also proposes an experimental research on transient regimes 

during the excitation (beat vibration). Based on a transient regime with 

negative mechanical power absorbed from the actuator, the authors 

propose a damping technique with actuator and active negative modal 

power supply. 

 

1.2 THEORETICAL PREDICTION OF THE MECHA-

NICAL POWER EVOLUTION  

 

Let us consider a mass-spring-damper system, with a single degree of 

freedom, as described in Fig. 1.1. Here m[Kg] is the mass, k[N/m] is 

the spring constant, and c[N·s/m] is the viscous damping coefficient. 

MS is a mechanical on-off switch used to cancel the elastic suspension 

of the system when necessary. The easiest way to excite the system 
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with a harmonic force Fe is to use an electrodynamic actuator (voice-

coil actuator) placed between the mass and the reference point RP. This 

actuator uses a coil (connected to the mass m) and a magnet near the 

coil. The magnet is attached to the reference point RP. Paulitsch [12] 

already performed a study on the electrodynamic parameters which are 

involved in the voice coil actuators design.  Suppose we have a 

harmonic signal generator with adjustable frequency, that supplies the 

coil with a harmonic voltage u(t) and a current i(t), if the electrical on-

off switch ES is switched-on.                                                           

 

Fig. 1.1: Description of the experimental set-up. 

 

There is an interaction between the current i(t) in the coil and 

the magnetic field, so that a harmonic Lorentz force occurs and works 

as an exciting force Fe in this vibratory system: 

 

 )tsin(FFe                                               (1.1) 
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Here ω[rad/s]=2·π·fe is the angular frequency, which is the 

same for force, voltage and current, while fe[Hz] is the frequency of 

exciting force.  

As a result, in stationary regime, the mass m has a harmonic 

motion x(t) given by: 

 

)tsin(A)t(x                                        (1.2) 

 

Here A[m] is the motion amplitude given by [13]: 
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                     (1.3) 

 

and α[rad] is the phase angle between the exciting force Fe and the 

motion x(t) given by [13]: 
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


                                             (1.4) 

 

In Eqs. 1.3 and 4 η is the relative angular frequency η=ω/p, 

p[rad/s] is the undamped angular frequency, m/kp   and ξ[1/rad] is 

the damping ratio, ξ=c/(2·m·p), with c[N·s/m] the viscous damping 

coefficient . 

If the damping ratio ξ is very small, the resonance of the mass-

spring-damper system is produced when ω→p thus η→1, the factor A0 

and the amplitude A of the motion x(t) from Eq. 1.3 has the highest 

value possible. 
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There is, of course, a mechanical work produced by the exciting 

force, thus a mechanical power N(t) produced by the actuator and 

absorbed by the mechanical system, given by: 

 

dt

dx
)t(F)t(N e                                                (1.5) 

 

Using Eqs. 1.1, 1.2 and 1.3 the mechanical power N(t) becomes: 

  

     )tcos(A
k

F
)tsin(F)t(N 0                (1.6)  

 

If T=2·π/ω[s] is the period of the harmonic evolution of the exciting 

force, then: 

 

)sin(
k2

AF
dt)t(N

T

1
N 0

2T

0








                      (1.7) 

 

is the average mechanical power absorbed by the system in the period 

T.   

Based on the last result, it is possible to describe the average 

mechanical power as: 

 

)cos(VFN rmsrms                                   (1.8)  

 

Here 2/FFrms   is the root mean square exciting force, 

)2k/(AV 0rms    is the root mean square velocity and θ=π/2-α is 

the phase angle between exciting force Fe and vibration velocity dx/dt. 
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Using A0 given in Eq. 1.3 and the definition of sin(α) deduced 

[11] from Eq. 1.4, the average mechanical power from Eq. 1.7 

becomes: 

 

222

2

)2()1(k

F
),p,(NN









                    (1.9) 

 

In stationary regime of excitation the average mechanical power 

is absorbed from the actuator and is dissipated as heat in the damper. It 

has the highest possible value on the resonance frequency and it is 

asymptotic to zero at lower and higher frequencies as proved below in 

the experimental results shown in Fig. 1.5(a).  

The average mechanical power can be evaluated using a force 

sensor (placed between the actuator and the mass m) and an absolute 

velocity sensor (placed on the mass).  

The power can be calculated using Eq. 1.5 and the first part of 

Eq. 1.7.  

 

1.3 NUMERICAL MEASUREMENT TECHNIQUE OF 

THE MECHANICAL POWER  

 

There is an easier way to measure the average mechanical 

power, without any additional sensor on the Fig. 1.1 set-up. It can be 

used the electrical power P(t) absorbed by the coil: 

 

)t(i)t(u)t(P                                             (1.10) 
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Here u(t)=U·sin(ω·t)  is the input voltage applied on the 

actuation coil, i(t)=I·sin(ω·t-φ) is the current inside the coil, U is the 

voltage amplitude, I is the current amplitude, φ is the phase angle 

between voltage and current. 

The absorbed average electrical power (also called active 

electrical power) in the period T=1/ fe is given by: 

 

 
T

0

T

0

dt)t(i)t(u
T

1
dt)t(P

T

1
P                         (1.11) 

 

The mathematical calculus in Eq. 1.11 gives the result: 

 

)cos(IUP rmsrms                                      (1.12) 

 

Here  2/UUrms   is the root mean square voltage (also called 

effective voltage), 2/IIrms   is the root mean square current. 

It is very interesting to remark the analogy between Eq. 1.12 

(description of electrical power) and Eq. 1.8 (description of mechanical 

power). 

The measurement and calculus of the average electrical power 

according with Eq. 1.12 is relatively difficult. This is why a numerical 

technique has been developed, as it is described below. 

Let us assume that uA(t)=u(t) and uB(t) are the voltages 

measured in the points A and B, (on Fig. 1.1). The electrical ground is 

used as voltage reference.  

The current i(t) inside the coil can be calculated using the 

voltage uB(t) with the formula i(t)=uB(t)/R, according to Ohm’s law 
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(measuring a current using a shunt resistor R=1.9 Ω). Both voltages 

uB(t) and uA(t) can be acquired and converted (from analogue signals to 

discrete time signals) using a numerical oscilloscope with two input 

channels and can be transferred to a personal computer for calculus 

(Fig.1.1).  

Let us consider that Δt is the sampling period of data 

acquisition, tj=j·Δt is the time of the current sample and n is the number 

of samples in each period T (calculated as the nearest integer of the 

ratio T/Δt). The numerical evaluation of the average electrical power 

given in Eq. 1.11 becomes: 

 

)t(u)t(u
nR

1
P jB

n

1j
jA






        with   tjt j               (1.13) 

 

If Δt→0 then in Eq. 13 the symbol ≈ becomes =. Suppose that 

the frequency fe of the exciting force is constant and that it is necessary 

to evaluate the average electrical power for a long time tm. Suppose that 

the time tm is marked as tm = m·T = m·n·Δt. Assume that ts = l·T = l·n·Δt  

is the time of the average electrical power sample (one sample in each 

period T), with l=1, 2, 3…m. The average electrical power sample can 

be marked (and calculated) as it follows: 

 

)t(u)t(u
nR

1
)t(P jB

)1l(n

1lnj
jAs 








     with m,.....,2,1,0l        (1.14)  

 

If MS is switched-off, then a part of the average electrical power 

)t(P s  absorbed by the coil is used to produce the average mechanical 
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power )t(N s  absorbed by the mass-spring-damper system, as it is 

described below: 

 



)t(N
P)t(P s

hs                                        (1.15) 

Here hP  is the average electrical power dissipated as heat in the 

coil and in the resistor R[Ω] (according with Fig. 1.1), μ[] is the power 

conversion efficiency (from electrical into mechanical, μ<1). If we 

suppose that hP  is constant, its value can be estimated using Eq. 1.15. 

If the coil is supplied and the mechanical switch MS is switched-on, 

then x(t)=0 (no vibratory motion) and )t(N s  is null. This means 

that hs P)t(P  . 

Based on Eq. 1.15 the average mechanical power sample can be 

calculated as follows: 

 

]P)t(P[)t(N hss                                     (1.16)   

 

A power conversion efficiency μ=1 will be considered in 

experimental research. The time evolution of the average mechanical 

power given in Eq. 1.16 is used for data analysis or monitoring 

purposes of this paper. 

 

1.4 EXPERIMENTAL SET-UP AND EQUIPMENT  

 

Fig. 1.2 shows an overview of the experimental set-up and 

equipment.  The mass-spring-damper system consists of an Aluminium 
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cantilever beam (200×40×2 mm) with an excitation coil and a Bruel & 

Kjær 4302 accelerometer placed at the free end of the beam. The 

system has a low viscous damping ratio (ξ =0.44%). The linear 

vibrating motion x(t) used in Fig. 1.1 is replaced here by the bending 

motion (first flexural mode of the free end of the cantilever beam). 

 

Fig. 1.2: A view on the experimental set-up and equipment. 

The voice-coil actuator consists of the excitation coil and a rare-

earth neodymium-iron-boron permanent magnet (NdFeB) placed on a 

mild steel magnetic deflector. The magnet generates a strong radial 

magnetic field inside the coil. The coil is supplied by a harmonic signal 

generator (TTi, TG 210) with adjustable frequency. The interaction 

between the magnetic field and the current in the coil generates a 

Lorentz force which actuates the beam. The electrical and mechanical 
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switches ES and MS (see Fig. 1.1) are hand operated. The voltages uA(t) 

and uB(t) are acquired using a computer assisted numerical oscilloscope 

(ADC 212-50, PicoScope Technology, UK). Several computer assisted 

calculation procedures and programms were created in Matlab, for 

experimental research, data processing, signal filtering and data fitting. 

 

1.5 THE MEASUREMENT OF THE ABSORBED 

MECHANICAL POWER IN EXPERIMENTAL TERMS  

 

The reliability of the proposed measurement technique of the 

mechanical power can be established using some experimental 

procedures described below. 

 

Fig. 1.3: The evolution of forced bending vibration (close to resonance 

frequency of first mode) and free bending vibration (see the chapter 

1.12). 
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A first experiment describes the behaviour of the cantilever 

beam if the coil is temporary supplied with a voltage Urms=418 mV and 

an exciting frequency fe = 14.005 Hz (very close to first bending mode 

resonance frequency). The mechanical switch MS is permanently 

switched-off. Fig. 1.3 presents the bending vibration elongation 

evolution of the free end of the cantilever beam (the signal provided by 

accelerometer was converted in elongation). A short description of the 

vibration amplitude evolution is given in Table 1.1. If  the electrical 

switch ES is switched-on (in A) then immediately after that (in B) the 

amplitude of vibrations starts to slowly increase; it is expected that the 

cantilever beam system should start to absorb more and more 

mechanical power and also to accumulate modal energy inside. In C the 

vibration amplitude and modal energy is maximal; the absorbed 

mechanical power is expected to be maximal and constant. In D the ES 

is switched-off, the excitation force drops to zero (as the absorbed 

mechanical power also does). In E the viscously damped free vibration 

is supplied by the mechanical modal energy stored inside the beam.  

A B C D E 
ES is 

switched 

on. Start 

harmonic 

excitation 

on 

14.0056 

Hz 

The vibration 

amplitude slowly 

increases. It is 

presumed that 

the absorbed 

mechanical 

power increases. 

Steady state regi-

me with maximal 

amplitude. It is 

presumed that the 

absorbed mecha-

nical power is ma-

ximal and con-

stant.  

ES is switched 

off. Stop exci-

tation. The 

absorbed me-

chanical po-

wer becomes 

instantly zero. 

Viscously 

low dam-

ped free 

vibration 

on 

14.016 Hz 

(ξ = 

0.5033%) 
 

 

Table 1.1 – A short description of the vibration amplitude evolution 

from Fig. 1.3.  
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Let us consider a second experiment. Suppose that the actuation 

coil is permanently supplied as before (the same voltage and frequency 

values) with ES in switched-on status. Concerning Fig. 1.3 and A, B 

and C events, the same behaviour of the cantilever beam can be 

obtained using the mechanical switch MS (if it is switched-off in A). If 

MS is switched-on (in D) the vibration amplitude suddenly becomes 

zero, the motion is cancelled. It is expected that the absorbed 

mechanical power should also suddenly become zero. The mirroring of 

this second experiment in the evolution of the absorbed average 

mechanical power is given in Fig. 1.4(a). A short description of each 

event (A1, B1, C1, D1 and E1) is given in Table 1.2.  

 

Fig. 1.4: Experimental results: a) the evolution of absorbed average 

mechanical power at resonance, b) the evolution of uA and uB voltages. 

(see the chapter 1.12) 
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The absorbed average mechanical power at resonance (steady-

state regime) is 5.09 mW (the difference between levels in D1 and E1). 

In Eq. 1.14 was used these measurement parameters values: n=218, Δt 

= 0.328 ms and m = 278.  

A1 B1 C1 D1 E1 

MS is switched-

off. The average 

mechanical po-

wer has null 

value. 

mW6.19Ph  . 

This is also the 

miroring of event 

A from Fig. 3. 

The absor-

bed average 

mechanical 

power slo-

wly incre-

ases. This is 

also the 

miroring of 

event B 

from Fig. 3. 

Steady state re-

gime. The absor-

bed average me-

chanical power 

has maximal and 

constant value, 

mW09.5N  . 

This is also the 

miroring of event 

C from Fig. 3. 

MS is 

switched-

on. Stop vi-

bratory mo-

tion.The ab-

sorbed ave-

rage mecha-

nical power 

becomes 

zero. 

Because 

MS is 

switched-

on, the ab-

sorbed a-

verage me-

chanical 

power is 

nought. 

 

Table 1.2 - Short description of the evolution from Fig. 1.4 
 

In Fig. 1.4(b) are described also the evolution of uA and uB 

voltages used to calculate the average mechanical power in C1. The 

phase angle φ is very small (6.5o) because the coil inductance and the 

frequency of excitation have small values.  

Thus it has proved that the measurement of the absorbed 

average mechanical power can be done with good accuracy. It is clear 

that the average mechanical power evolution is useful to describe the 

dynamics of the vibratory systems (see also next results). 

According to Figs. 1.3 and 1.4 when the free end of the 

cantilever beam starts to be excited on resonance frequency (here the 

first flexural mode) the vibration amplitude and the modal mechanical 

power absorbed doesn’t touch instantly the maximal values. 
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1.6 EXPERIMENTAL CONFIRMATION OF THE 

THEORETICAL PREDICTION  

 

The theoretical model for the absorbed mechanical power 

established in Eq. 1.9 can be confirmed by the experimental 

measurements and data processing as it follows. 

 

Fig. 1.5: Experimental confirmation: a)  curves fitting (average 

mechanical power versus frequency fe), b)  experimental measurement,  

c) passive damping technique at free end of the cantilever beam. 
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By using the same set-up and measurement technique 

(Urms=418 mV voltage), the absorbed average mechanical power for a 

narrow range of exciting frequencies around the resonant value (first 

bending/flexural mode of the free end of the cantilever beam) can be 

measured in the same way (the difference of power between D1 and E1 

levels, see Fig. 1.4). Each measurement generates a data point. Using 

computer aided curve fitting, the experimental data points can be 

interpolated. Eq. 1.9 is used as fitting function (with ω=2·π·fe the 

angular frequency). The objective of data interpolation is to find the 

values of the fitting parameters F2/k, p and ξ.  The graphical result is 

described in Fig. 1.5(a), curve #1. 

The values of the fitting parameters are given in the first row of 

the Table 1.3. The first confirmation of the theoretical model of average 

mechanical power evolution is the shape of the curve #1 [8, 11] and the 

data point position on the curve.  

 

 F2/k [N·m] p [rad·s-1] ξ [rad -1] 
 

Curve #1 
 

1.232·10-6 88.2744 

(14.049 Hz) 

0.0052 

(0.52%) 
 

Curve #2 
 

1.234·10-6 88.4182 

(14.072 Hz) 

0.0221 

(2.21%) 
 

Table 1.3 - The values of  the fitting parameters 

 

The second confirmation is given by the values of fitting 

parameters: p/(2·π) = 14.049 Hz frequency and ξ = 0.0052 damping 

ratio (0.52%). These values are very close to those already found in 

Fig. 1.3 (viscously damped free vibration signal analysis, see the event 

E in Table 1.1). 
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The reliability of the mechanical power measurement technique 

and the theoretical prediction can also be confirmed by a new 

experiment. The damping in the cantilever beam system is increased 

using a passive damping technique based on eddy-curents [14], as it is 

described on Fig. 1.5(c). Two neodymium-iron-boron (NdFeB) 

permanent magnets are placed in the proximity of the free end of the 

cantilever beam (1 mm gap). The cantilever motion in magnetic field 

generates eddy-currents in the cantilever material (aluminium). The 

interaction between these currents and the magnetic field generates a 

viscous friction braking force. The experimental measurements of the 

absorbed average mechanical power and curve fitting data interpolation 

were done in the same condition as previously for curve #1. The 

graphical result is described on curve #2, Fig. 1.5(a). The values of the 

fitting parameters are described in the second row of the Table 1.3.  

As expected, the absorbed average mechanical power at 

resonance is strongly reduced. According to Table 1.3 only the 

damping ratio is significantly changed: ξ =0.0221 (2.21%). 

It has been proved that the cantilever beam set-up works as a 

narrow-band-pass absorber for the mechanical modal power delivered 

by the actuation system. The amount of modal power absorbed at 

resonance depends on the damping ratio value.  A single degree of 

freedom mass-spring-damper system has a minimal mechanical 

impedance1 (or maximal mechanical admittance as well) on the 

resonance frequency. These are solid arguments to explain the 

behaviour of the passive dynamic absorbers (Ormondroyd [15]) also 

known as tune mass dampers. The actuating coil used here to excite the 
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cantilever beam transforms the mechanical impedance into electrical 

impedance. 

 

 1.7 EXPERIMENTAL CONDITIONS VALIDATION 

BY SIMULATION 

 

The values of the fitting parameters which were found before 

can be used by computer assisted numerical simulation, to increase the 

confidence in the experimental conditions previously utilised. As an 

example, the experimental evolution from Fig. 1.3 can also be obtained 

by simulation. We already assumed that the cantilever beam can be 

approximated by a single degree of freedom mass-spring-damper 

system (for first flexural mode of vibration). The homogenous 

differential equation of this system (without additional damping) is 

described [13] as it follows: 

 

0xp
dt

dx
p2

dt

xd 2

2

2

                                 (1.17) 

 

Using the values of the fitting parameters of the curve #1 (see 

Fig. 1.5 (a) and Table 1.3, first row) this equation can be written in the 

following manner:  

 

 0x37.7792
dt

dx
9180537.0

dt

xd
2

2

                      (1.18) 

Based on this equation it is possible to generate the Simulink 

model of the experiment described in Fig. 1.3. 
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Fig. 1.6: Simulink model of the experimental results  described in Fig. 

1.3. 

This model is shown in Fig. 1.6. The parameters used for each 

block in the model are described in Table 1.4.  

Ramp block Slope=0.6   Start time=0   Initial output=1 

Ramp1 block Slope=3   Start time=0   Initial output=1 

Sine Wave block Amplitude=0.030   Frequency (rad/s)=87.99 

Switch block u2>=Treshold   Threshold=10 

Switch1 block u2>=Treshold   Threshold=10 

Transfer Fcn block Numerator [0.9180537  7792.37] 

Denominator [1  0.9180537  7792.37]   

Scope Simulation time: Start time=0; Stop time=20; 
 

Table 1.4 - Block parameters used in the Simulink model (Fig. 1.6). 
 

The simulation done on this Simulink model gives a graphical 

result (available on the Scope block) which reproduces with high 

accuracy the experimental result described in Fig. 1.3. 
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1.8 NEGATIVE MECHANICAL POWER CONCEPT IN 

VIBRATION ENGINEERING 

 

Usually, when a vibrating structure is excited, it is easy to 

understand what positive absorbed average mechanical power exactly 

means. An interesting question arises: can absorbed average 

mechanical power be negative?  And if so, can negative power be 

useful in vibration engineering? 

 

Fig. 1.7: Self generated beat vibration: a) mirrored in elongation 

evolution, b) mirrored in average mechanical power  evolution (see the 

chapter 1.12). 
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The negative absorbed average mechanical power has been 

experimentally observed during the transient regimes of excitation with 

beat vibration. Fig. 1.7(a) describes a first experiment with self 

generated beat vibration phenomenon; Fig. 1.7(b) describes the 

mirroring of beat vibration in the evolution of average mechanical 

power.  

The experiments were done exactly in the same conditions 

previously used before for the experiment described in Figs. 1.3 (see 

Table 1.1) and 1.4 (see Table 1.2). The only difference consists in the 

frequency of the exciting force, 13.84 Hz, lower than the resonance 

frequency of the first bending mode of the cantilever beam. 

In Fig. 1.7(a) the variation of the amplitude in B area is 

connected to a beat vibration phenomenon. According to the vibration 

theory, when the electrical switch ES is switched-on (the event A) free 

and forced vibrations are generated in the cantilever beam. The 

viscously damped free vibrations are also generated if ES is switched-

off (as indicated in E on Figs. 1.7(a) and 1.3). The viscously damped 

free vibrations (14.005 Hz, ξ =0.0044, according to Table 1.1) and 

forced vibrations (13.84 Hz) generates a transient regime with 

destructive and constructive interference, with nodes and anti-nodes 

(beat vibration). While in anti-nodes the resultant amplitude increases 

(zero phase-shift between free and forced vibrations, with constructive 

interference), in nodes the resultant amplitude decreases because the 

free and forced vibrations are out of phase (π phase-shift, with 

destructive interference). It is important to notice that the experimental 

evolution described in Fig. 1.7(a) can also be obtained by simulation, 
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using the model given in Fig. 1.6.  Only the frequency of the Sine 

Wave block was changed (Frequency (rad/s) = 86.89, see Table 1.4). 

On Fig. 1.7(b) it is evident that the transient phenomenon in B1 

is the mirroring of the beat vibration phenomenon previously described 

in B on Fig. 1.7(a). The absorbed mechanical modal power increases 

when the constructive interference of vibrations is produced and 

decreases when this interference is destructive.  

Let us consider a second experiment with beat vibration 

phenomenon mirrored in vibration elongation and average mechanical 

power evolution, with the experimental results described in Fig. 1.8. 

 

Fig. 1.8: Beat phenomenon with negative average mechanical power: 

a) in elongation evolution, b)  in average mechanical power  evolution, 

c) zoom-in on elongation evolution  (see the chapter 1.12). 
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Exactly as before, the voice coil actuator is permanently 

electrically supplied, but the excitation frequency is smaller, 12.79 Hz 

(lower than previously). In A ES switch is switched-on, MS switch is 

off. The cantilever beam vibrates with low amplitude (0.05 mm). 

The first bending mode of the cantilever beam is mechanically 

excited with a step excitation (see the events A on Fig. 1.8(a) and A1 on 

Fig. 1.8(b)). A viscously damped free vibration occurs. The beating 

vibration phenomenon which is generated (free and forced vibrations 

interference) is described on Fig. 1.8(a). Figure 1.8(c) presents a zoom 

of Fig. 1.8(a). An anti-node (in B) and a node (in C) are clearly 

indicated. The mirroring of the beating in the average mechanical 

power evolution is described in Fig. 1.8(b). There is an evolution with 

positive and negative peaks of the absorbed average mechanical power 

(as free damped oscillation of power). 

The constructive interference generates anti-nodes, e.g. B on 

Fig. 1.8(c), and positive peaks of power, e.g. B1 on Fig. 1.8(b). 

According to Eq. 1.8 ( )cos(VFN rmsrms  ) the absorbed average 

mechanical power has maximum value if the phase-shift between the 

excitation force and the velocity of vibration motion is θ = 0 (or, 

according to Eq. 1.7 the phase-shift between the excitation force and 

the elongation of vibration motion is α = π/2). The voice coil actuator 

and the harmonic signal generator increase the modal energy stored 

inside the cantilever beam and the amplitude of the vibratory motion as 

well. 

The destructive interference generates nodes, e.g. C on Fig. 1.8(c), and 

negative peaks of power, e.g. C1 on Fig. 1.8(b). According to Eq. 1.8 
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( )cos(VFN rmsrms  ) the power reaches its minimum value if the 

phase-shift between the excitation force and the velocity of vibration 

motion is θ = π (or, according to Eq. 1.7 the phase-shift between the 

excitation force and the elongation of vibration motion is α = 3·π/2).  

Now the voice coil actuator and the harmonic signal generator work as 

an active damping system. It removes the modal energy stored inside 

the cantilever beam and reduces the amplitude of the vibratory motion. 

Moreover, it also works as an active negative mechanical modal power 

supply for the cantilever beam vibration mode (energy harvesting).  

These conclusions are very useful in vibration engineering. To 

excite a vibratory structure means to actuate it with a positive 

mechanical modal power supply.  To damp a vibratory motion in a 

structure means to actuate it with a negative mechanical modal power 

supply. A negative mechanical modal power supply generates a force 

directly proportional to the velocity (and π shift of phase between), or it 

generates a force directly proportional to the velocity and a force-

displacement shift of phase of 3·π/2. The damping can be active (active 

damping or synthetic damping as well, generated by an actuator and an 

electrical power supply) and passive (using a classical viscous damper 

or a passive dynamic absorber [15]). The active damping is briefly 

described in Fig. 1.9(a). We propose a conceptual technique, to 

generate active damping using a voice-coil actuator supplied by an 

active negative electrical modal power supply. In other words this 

power supply is used to absorb and to dissipate a maximum amount of 

modal energy delivered by the vibratory structure via the voice-coil 
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actuator. Of course, the negative modal power supply is a receiver and 

not a generator. 

 

Fig. 1.9: Synthetic damping with negative modal power supply : a) 

proposed technique, b) active damping with velocity-force feedback, c) 

active damping with acceleration-force, d) passive damping with shunt 

resistor 

 

A difficult first question arises: how exactly can this special 

electrical power supply be obtained? This is the greatest challenge of 

future work. We have already proved the availability of this technique 

in experimental condition (Fig. 1.8) and understood that the voice coil 
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actuator works as sensor and actuator as well. It seems that the active 

negative power supply should measure the voltage generated by the 

coil (velocity sensor) and to generate a current in the coil (hence an 

actuating Lorentz force). 

A second question should also preoccupy us: is it possible to 

create such a power supply?  The answer is yes, according to the 

scientific literature and Figs. 1.9 (b), 1.9 (c) and 1.9 (d). 

A known technique in the field of vibration uses the active 

damping with negative feedback [16, 17]. A feedback loop whose input 

is velocity generates a proportional force. The force and the velocity 

have opposite directions. 

According to Fig. 1.9 (b), this technique uses an absolute 

velocity sensor, a power amplifier and a voice-coil actuator.  The 

sensor and the actuator must be collocated. The actuator generates an 

active damping viscous force Fa=ca·dx/dt with ca<0. If ca>0 then the 

feedback is positive. In Fig. 1.9 (b) the active negative electrical power 

supply consists of a velocity sensor and a power amplifier. If an 

accelerometer is used as sensor, then an integrator should be used 

inside the feedback loop, as it is indicated in Fig. 1.9 (c). In comparison 

to Fig. 1.9 (a), both structures (Figs. 1.9 (b) and 1.9 (c)) need a sensor 

collocated with the actuator. 

Based on a passive shunt placed as electric consumer on the voice coil 

actuator (de Marneffe [18]), an extremely simple solution to create a 

negative power supply can be found. In Fig. 1.9 (d) the passive shunt is 

a resistor. The vibratory motion generates a voltage in the coil (sensor 

behaviour). The voltage is proportional to the velocity. The voltage 



 

 

 

 

 

 

                                                                                      

36 

 

generates a current. The current generates a damping force applied to 

the mass m (Lorentz force actuator behaviour). The force is directly 

proportional to the velocity, and inversely proportional to the ohmic 

resistance of the electrical circuit (coil and shunt resistor). The modal 

energy is removed and dissipated as heat produced by the resistor. 

Nevertheless, even if the shunt resistance is nought, the viscous force 

generated is not high enough because of the ohmic resistance of the 

coil.   

 

1.9 HYPOTHESES FOR FUTURE RESEARCH 

 

In a simplistic approach, the behaviour of the active negative 

electrical modal power supply (Fig. 1.9 (a)) can be obtained in the 

experimental conditions used in Fig. 1.8. Supposing that each time that 

the absorbed average mechanical power becomes positive 

(or hs P)t(P  ) the electrical switch ES is switched-off. The electrical 

switch ES is switched-on only if this power is negative (or hs P)t(P  ). 

If the vibratory system is mechanically excited then the beat vibration 

phenomenon occurs but only the destructive interference is used, so 

that a permanent damping has effect.  

There is also another option based on the principle shown in Fig. 1.9 

(d).  Given Rc the voice-coil ohmic resistance value (Rc>0) and Rs the 

ohmic resistance value of the shunt resistor, the highest efficiency in 

damping is theoretically generated if Rc+Rs→0 so Rs → -Rc. A negative 

shunt resistor (as electrical supplied electronic device or active shunt 
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[18]) should be an equivalent of the active negative electrical power 

supply. Nevertheless, for now, producing resistors with negative 

resistance (Wang [19]) seems to be a great technological challenge. 

Last, but not least, there is a third option based on Eq. 1.8. The active 

negative electrical modal power supply should detect the velocity and 

the phase of the velocity of a mode of vibration and generate an 

exciting force directly proportional to the velocity and π shift of phase. 

The voice-coil is used as sensor and actuator. 

 

1.10 CONCLUSIONS 

 

The computer assisted measurement technique of the average 

mechanical power absorbed by an actuated vibratory system is a 

reliable tool in experimental research. The experimental set-up based 

on a cantilever beam actuated by a voice coil actuator assures 

credibility to the results of the research. The voice coil actuator is used 

as loading sensor for output mechanical power, based on the 

measurement of the input electrical power. The theoretical model for 

the evolution of the mechanical power versus the frequency of 

excitation was validated by the experimental results. The absorbed 

average mechanical power evolution can be used to describe the 

dynamic behaviour of the vibratory systems. The paper also performs 

an experimental research on a transient regime (beat vibration) with 

negative mechanical power absorbed from the actuator. Based on this 

research the paper proposes a conceptual technique to generate active 

damping using a voice-coil actuator supplied by an active negative 
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electrical modal power supply. In the future the research will focus on 

the synthesis of this power supply. Some research on power flows in 

dynamic systems actuated with piezoelectric actuators will also be 

carried out. 
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1.12 A SUMMARY OF SOME EXPERIMENTAL 

FIGURES 

 

Some experimental figures from this paper can be reproduced 

by any reader as it is indicated below. First please download the folder  

Data  paper 2 ( see the download  indications  from  preface). 

 

Figure 1.3 

 

Use the programs and the data files fromthe folder Data Fig. 1.3. Inside 

of this folder there are some programs and data files. You can run the 

Matlab program fig13.m in order to obtain the main parts of Figure 1.3.  

It is possible to find-out the exactly value of the frequency of excitation 

in steady state regime (C area on Figure 1.3) by running the Matlab 

program ident1. This program finds out the characteristics of a 

theoretical harmonic curve which is the best fitting for the harmonic 

evolution of the vibration elongation in C area. The both curves 

(theoretical in blue and experimental in red) are drawed on the figure 

generated by the program. The value of frequency (already given in 

Table 1.1, first column) is written in the command window. 

It is also possible to find out by numerical fitting the parameters of the 

free response of the cantilever beam from E area (Figure 1.3) by 

running the Matlab program ident2. It is suppose that this free response 

is described in theoretical terms by the following equation: 
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)tpsin(ea)t(x 1
)tp(   

                 (1.19) 

 

The program ident2 is able to find-out the best fitting curve which fit 

the experimental evolution and the values of the parameters involved in 

Eq. (1.19). You find the values of these parameters in the matrix d.  

You can see the both curves on the figure generated by the program 

(experimental curve in red and the fitting curve in blue). The both 

curves are very well fitted each other. This is an experimental 

confirmation that the theoretical shape of the free response from Eq. 

(1.19) is correct. The program ident2 is also useful to solve the task #3 

from chapter 1.13.   

The program generates in the command window the values of the 

damping ratio (%) and frequency of free response as it were also 

written on Figure 1.3 and Table 1.1 in last column. 

 

Figure 1.4 

 

You need the folder Data Fig. 1.4. Inside of this folder there is a 

program and a data file. You can run the Matlab program desput in 

order to obtain the main parts of Figure 1.4. The program also 

calculates the value of active electrical power absorbed by the 

cantilever beam in steady-state (5.09 mW).  

 

Figure 1.7 
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Use the files from the folder named Data Fig. 1.7. Inside of this folder 

there is a program and some data files. You can run the Matlab 

program desputa in order to obtain the main parts of Figure 1.7. 

 

Figure 1.8 

 

Use the files from the folder named Data Fig. 1.8. Inside of this folder 

there is a program and some data files. You can run the Matlab 

program desputa in order to obtain the main parts of Figure 1.8. 

 

 

1.13 THEORETICAL AND EXPERIMENTAL WORK 

TASKS 

 

1. Perform the experimental setup described in Figs. 1.1 and 

1.2. Use the oscilloscope PicoScope 4424 (4 channels) in 

order to acquire at the same time the voltages in the points A 

and B (Fig. 1.1) and the voltage delivered by the 

accelerometer (Fig. 1.2).  

 

2. Perform the experiment described in Fig.1.3 in order to 

obtain the evolution of the voltage generated by 

accelerometer in two ways: using only the oscilloscope and 

via a Matlab program (with moving average numerical 

filtering of data).    
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3. Try to emulate a Matlab program in order to find out the 

parameters of free viscous response (E area from Fig. 1.3) by 

numerical interpolation (curve fitting). Here below is 

described an example of curve fitting applied on simulated 

data. 

The program called simulation (listed below) simulates a free 

viscous response. 

The program simulation 

close all;clear all;tic; 

k=1;a=10;e=2.718281828;n=0.54;p1=113.14;fi=1.234; 

for i=0:0.0001:10 

    x1(k)=i;y1(k)=0; 

    if i>1; 

y1(k)=a*e^(-n*x1(k))*sin(p1*x1(k)+fi); 

%here above is a mathematical description of a free 

%viscous response 

    else end 

k=k+1; 

end 

save x1;save y1; 

 

 The program ident (listed below) is used to find out with a good 

accuracy the values of the parameters n, p1 and fi used before for the 

simulation of the free viscous response.  

 

The program ident 

close all;clear all;tic; 

load x1;load y1; 

dim=size(x1);l=dim(2);pasp=50; 

nrpuncte=500;liminf=10000;limsup=liminf+pasp*nrpunct

e;x1=x1-x1(liminf); 

j=1;for i=liminf:pasp:limsup-

1;y(j)=y1(i);x(j)=x1(i);j=j+1;end 
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rafinare=10; 

min=99999999999;k=0;eroare=0; 

aimin=5;aimax=15;stepai=(aimax-aimin)/rafinare; 

nimin=0.30;nimax=2;stepni=(nimax-nimin)/rafinare; 

p1imin=110;p1imax=120;stepp1i=(p1imax-

p1imin)/rafinare; 

fiimin=0;fiimax=3;stepfi=(fiimax-fiimin)/rafinare; 

run curvefit 

%The listing of the program curvefit is given 

%immediately below this program 

for ncicli=1:30 

min=99999999999;eroare=0; 

aimin=c(1)-stepai;aimax=c(1)+stepai;stepai=stepai/2; 

nimin=c(2)-stepni;nimax=c(2)+stepni;stepni=stepni/2; 

p1imin=c(3)-

stepp1i;p1imax=c(3)+stepp1i;stepp1i=stepp1i/2; 

fiimin=c(4)-

stepfi;fiimax=c(4)+stepfi;stepfi=stepfi/2; 

run curvefit 

end 

d(1)=c(1);d(2)=c(2);d(3)=c(3);d(4)=c(4); 

for i=1:nrpuncte; 

   b(i)=d(1)* 2.718281828 

^(-d(2)*x(i))*sin(d(3)*x(i)+d(4)); 

   t(i)=x(i); 

end 

close all 

plot(t,y,'b','LineWidth',1.5);hold on;grid; 

plot(t,b,'r'); 

toc 

d 

 

 

The program curvefit 
 

for ai=aimin:stepai:aimax; 

      for ni=nimin:stepni:nimax; 

         for p1i=p1imin:stepp1i:p1imax; 

           for fii=fiimin:stepfi:fiimax;  

               for i=1:nrpuncte; 

      b(i)=ai*2.718281828^(-

ni*x(i))*sin(p1i*x(i)+fii); 
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      %eroare=eroare+abs(abs((y(i)))-

abs((b(i))));k=k+1; 

      eroare=eroare+abs(y(i)-b(i));k=k+1; 

   end 

   if 

eroare<min;c(1)=ai;c(2)=ni;c(3)=p1i;c(4)=fii;min=ero

are; 

      else end;eroare=0; 

end 

end 

end 

end 

 

 

All three programs (simulation, ident and curvefit, also 

available in electronic format) should be placed in the same folder.  

First run the program simulation, then the program ident. The values of 

identified parameters are listed in the command window of Matlab.  

The last three values are n, p1 and fi. 

In order to find out the parameters of the free response from 

experimental evolution is necessary first to save the evolution of the 

voltage generated by accelerometer from oscilloscope in a data file 

(with extension .txt, named data.txt) in the same folder as the programs.  

The header of this file should be removed (the file should 

contains just two columns of numbers). This file is imported by 

program ident. The first part of this program (marked with bold) should 

be replaced with these instructions: 

 

close all;clear all;tic; 

load data.txt; 

%data.txt is the name of the file used to save the 

%data from oscilloscope to computer 

x1=data(:,1)/1;y1=data(:,2)/1;x1=x1-x1(1); 

y1=y1+0.03; 
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%the instruction above removes the offset of the 

%oscilloscope (this offset should be measured) 

y1=smooth(y1,100); 

%the instruction above makes the numerical filtering 

%of data (moving average filter) 

dim=size(x1);l=dim(1);pasp=50; 
 

The program should be adapted in such a way the curve fitting 

procedure starts right in E area (Fig. 1.3). For this purpose is available 

the Matlab instruction liminf=10000; in program ident. The value of 

this variable should be changed appropriately.   

 

4. Try to find out if the value of damping ratio ξ is strictly 

constant during the entire free response. 

 

5. Perform the experiment described in Fig.1.4 in order to 

obtain the evolution of the average mechanical power 

absorbed by the cantilever beam. Also try to perform the 

experiment in order to find out the value of average 

mechanical power absorbed in steady state regime, for 

different values of frequency arround the resonance. The 

program listed below can be useful for this purpose: 

 

The program desput 

 
clear all;close all; 

inreg=10;p=1;start=cputime; 

load putporp1.txt; 

l=size(putporp1); 

timp1=putporp1(:,1);amplit=putporp1(:,2); 

timp=timp1(1:l/2)/1000000;tens=amplit(1:l/2)/1000; 

l1=l(1)/2+1; 

curent=amplit(l1:l)/1900; 

putinst=tens.*curent; 
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plot(timp,putinst) 

sup=round(l(1)/(2*inreg*14.011416));%this last value 

%is the value of frequency of the voltages 

pk=1;lim=l1-sup; 

for i=1:sup:lim;med=0; 

   for j=1:sup; 

      med=med+putinst(i+j); 

   end 

   med=med/sup;putact(pk)=med; 

   timpputact(pk)=timp(i+round(sup/2)); 

   pk=pk+1; 

end 

plot(timpputact,putact,'k'); 

  

%rutina filtrare 

d=size(putact); 

  

k=1; 

for i=1+p:d(2); 

   a=putact(i-p+1:i);b=timpputact(i-

p+1:i);meda1=sum(a);meda2=sum(b); 

   putactf(k)=meda1/p;timpf(k)=meda2/p; 

   k=k+1; 

end 

 for i=1:p;putactf(i)=putactf(p+1); 

   timpf(i)=timpf(p+1); 

end 

plot(timpf,putactf,'b','LineWidth',1.5) 

stop=cputime;executie=stop-start 

dim=size(timpf);dim1=dim(2); 

lim1=14;lim2=17;lim3=18;lim4=20;med1=0;med2=0;k1=0;k

2=0; 

for i=1:dim(2) 

   if timpf(i)>lim1;if 

timpf(i)<lim2;k1=k1+1;med1=med1+putactf(i);else end; 

else end 

   if timpf(i)>lim3;if 

timpf(i)<lim4;k2=k2+1;med2=med2+putactf(i);else end; 

else end 

end 

med1=med1/k1; 

med2=med2/k2; 



 

 

 

 

 

 

 
     

49 

 

  

(med1-med2) 

    

This program and the file putporp1.txt are also available in 

electronic format (see the chapter 1.12). Run the program and 

try to change the structure in order to achieve the proposed 

tasks. 

 

6. Performed the experiment described in Figure 1.5. In order to 

find out the fitting parameters for each curve, the programs 

listed below (used to obtain Figure 1.5) can be useful. 

 

The program curvefitting 

clear all;close all; 

%This section make the fitting of curve #1 

load date3.txt; 

x=date3(:,1);y=date3(:,2); 

dim1=size(x);dim=dim1(1); 

  

x1=x;y1=y;clear x;clear y; 

start=cputime; 

nrpuncte=dim;liminf=1;limsup=liminf+nrpuncte; 

j=1;for i=liminf:limsup-

1;y(j)=y1(i);x(j)=x1(i);j=j+1;end 

rafinare=30; 

min=99999999999;k=0;eroare=0; 

cmin=0.5000e-006;cmax=2.7000e-006;stepc=(cmax-

cmin)/rafinare; 

pmin=87;pmax=89;stepp=(pmax-pmin)/rafinare; 

zetamin=.004;zetamax=0.006;stepzeta=(zetamax-

zetamin)/rafinare; 

  

run cfit 

for ncicli=1:20 

min=99999999999;eroare=0; 

cmin=c(1)-stepc;cmax=c(1)+stepc;stepc=stepc/2; 

pmin=c(2)-stepp;pmax=c(2)+stepp;stepp=stepp/2; 
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zetamin=c(3)-

stepzeta;zetamax=c(3)+stepzeta;stepzeta=stepzeta/2; 

run cfit 

end 

  

d(1)=c(1);d(2)=c(2);d(3)=c(3); 

  

inc=(x(dim)-x(1))/150;ku=1; 

for i=x(1):inc:x(dim);i1=2*pi*i/p; 

   b(ku)=d(1)*d(2)*d(3)*i1^2/((1-

i1^2)^2+4*i1^2*d(3)^2); 

   absc(ku)=i;ku=ku+1; 

end 

hold on; 

%plot(x,y,'k','LineWidth',1.5); 

plot(absc,b,'b','LineWidth',1.5);hold on 

  

d,k 

stop=cputime;executie=stop-start 

  

x=x1;y=y1; 

for j=1:dim; 

for i=.1:.1:3;k=1;scalex=0.006;scaley=0.00002; 

   for teta=0:.01:2*pi+.1; 

      

absc(k)=(x(j)+i*cos(teta)*scalex);ord(k)=y(j)+i*sin(

teta)*scaley; 

      k=k+1; 

   end 

   plot(absc,ord,'r');clear absc;clear ord;hold on 

end 

end 

   

%This section make the fitting of curve #2 

  

load date2.txt;; 

x=date2(:,1);y=date2(:,2); 

dim1=size(x);dim=dim1(1); 

  

x1=x;y1=y;clear x;clear y; 

start=cputime; 

nrpuncte=dim;liminf=1;limsup=liminf+nrpuncte; 
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j=1;for i=liminf:limsup-

1;y(j)=y1(i);x(j)=x1(i);j=j+1;end 

rafinare=30; 

min=99999999999;k=0;eroare=0; 

cmin=0.5000e-006;cmax=2.7000e-006;stepc=(cmax-

cmin)/rafinare; 

pmin=87;pmax=89;stepp=(pmax-pmin)/rafinare; 

zetamin=.01;zetamax=0.03;stepzeta=(zetamax-

zetamin)/rafinare; 

run cfit 

for ncicli=1:20 

min=99999999999;eroare=0; 

cmin=c(1)-stepc;cmax=c(1)+stepc;stepc=stepc/2; 

pmin=c(2)-stepp;pmax=c(2)+stepp;stepp=stepp/2; 

zetamin=c(3)-

stepzeta;zetamax=c(3)+stepzeta;stepzeta=stepzeta/2; 

run cfit 

end 

  

d1(1)=c(1);d1(2)=c(2);d1(3)=c(3); 

  

inc=(x(dim)-x(1))/150;ku=1; 

for i=x(1):inc:x(dim);i1=2*pi*i/p; 

   b(ku)=d1(1)*d1(2)*d1(3)*i1^2/((1-

i1^2)^2+4*i1^2*d1(3)^2); 

   absc(ku)=i;ku=ku+1; 

end 

hold on; 

  

plot(absc,b,'r','LineWidth',1.5);hold on 

axis([13.1 14.9 -0.0001 0.0053]) 

d1,k 

stop=cputime;executie=stop-start 

 x=x1;y=y1; 

for j=1:dim; 

for i=.1:.1:3;k=1; 

   for teta=0:.01:2*pi+.1;      

absc(k)=(x(j)+i*cos(teta)*scalex);ord(k)=y(j)+i*sin(

teta)*scaley; 

      k=k+1; 

   end 

   plot(absc,ord,'b');clear absc;clear ord;hold on 
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end 

end 

 

 

The program cfit 

 

for ci=cmin:stepc:cmax; 

   for p=pmin:stepp:pmax; 

      for zeta=zetamin:stepzeta:zetamax; 

         for i=1:nrpuncte; 

            pulsrel=2*pi*x(i)/p; 

      b(i)=ci*p*zeta*pulsrel^2/((1-

pulsrel^2)^2+4*pulsrel^2*zeta^2); 

      eroare=eroare+abs(abs((y(i)))-

abs((b(i))));k=k+1; 

   end 

   if 

eroare<min;c(1)=ci;c(2)=p;c(3)=zeta;min=eroare; 

      else end;eroare=0; 

end 

end 

end 

 

The file date3.txt 

 

14.85557  0.000030219 

14.71360  0.000067708 

14.47028  0.00012467 

14.31600  0.00035309 

14.17322  0.0012653 

14.07710  0.0045669 

14.04056  0.0051522 

13.90310  0.00118 

13.88880  0.00078782 

13.79662  0.00031057 

13.70580  0.0001949 

13.56990  0.00012563 

13.5064    0.000096958 

13.40482  0.00007615 
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13.2555    0.000048298 

13.1371    0.00001086 

 

 

The file date2.txt 

 

14.846200  0.000143 

14.775700  0.00016464 

14.545400  0.00039199 

14.415376  0.00060452 

14.278150  0.0008617 

14.188100  0.0011062 

14.150900  0.0011579 

13.996800  0.0011650 

13.917500  0.0010048 

13.785790  0.00064934 

13.584117  0.000353 

13.450590  0.00023394 

 

The both programs and both data files should be placed in the 

same folder. Run the program curvefitting and you will obtain 

the curves from Figure 1.5. 

 

7. Perform the Simulink simulation described in Fig. 1.6 and 

Table 1.4 in order to obtain the result given in Figs. 1.3 and 

1.7 (a). 

 

8. Perform the experiment described in Figs. 1.7 and 1.8. 
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Paper 2 

 

DYNAMIC CHARACTERIZATION 

OF A PIEZOELECTRIC ACTUATED 

CANTILEVER BEAM USING 

ENERGETIC PARAMETERS 
 

 

ABSTRACT 

This paper aims to examine in experimental terms some new research 

opportunities on the dynamic behaviour of the mechanical systems with piezoelectric 

actuation, using the energetic parameters evolution (especially the electric active 

power or real power as well) captured from the supply circuit of the actuator. The 

study is carried out on an experimental setup which consists of an aluminium 

cantilever beam having two small thickness PZT piezoelectric plate transducers glued 

close-by the rigidly fixed end on each side of the beam. Using some new theoretical 

and experimental approaches, developed for these purposes, there is undertaken the 

computer assisted monitoring of the energetic parameters from the piezoelectric 

transducers supply circuit. The transducers are used as sensors and actuators as well.  

The research focuses on the possibility to describe some essential dynamic 

phenomena such as: vibration modes characterization, resonance, modal damping 
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using negative power actively and passively generated and the dynamics of transient 

regimes. Some results are similar to those already obtained on a cantilever beam 

actuated with a voice-coil (Lorentz force) actuator. 

Keywords: Vibration engineering, cantilever beam, piezoelectric actuation, 

energetic parameters, negative power 

 

 

2.1 INTRODUCTION 

 

The piezoelectric actuation and sensing using the inverse and 

direct piezoelectric effect is well known in mechanical structures 

vibration engineering [1, 2]. The same piezoelectric device, called 

transducer, works as actuator and sensor. Generally the actuation is 

used to excite mechanical structures in order to produce vibrations or 

small static displacements.  The sensing is used to describe the 

dynamics of the structures (in terms of the voltage measured on the 

electrodes [3]) and, actually, for power harvesting [4, 5, 6] in order to 

convert the environmental mechanical vibration energy into storable 

electrical energy and to damp the vibrations as well.  During the last 

two decades the vibration engineering focussed on a new challenge: 

active and passive vibration damping in mechanical structures using 

piezoelectric transducers. The active vibration damping [1, 2, 7, 8, and 

9] generally uses a negative velocity-force feedback loop with 

collocated sensor and actuator. With a feedback loop it is also possible 

to change some modal frequencies of mechanical structures. The 

passive damping techniques [8, 9, and 10] use the piezoelectric 

transducer as sensor and actuator. Using a resistance-inductance (R-L) 

series shunt placed on the transducers electrodes, the mechanical modal 
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energy is converted into electrical energy and dissipated as heating on 

the resistor. The inductance is used to cancel the capacitive reactance of 

the piezoelectric transducer on the frequency of the vibration mode in 

order to have minimal electrical impedance, or to have a damping R-L-

C electrical resonating circuit in co-resonance with the mechanical 

structure. For each mode of vibration it is necessary to use an R-L 

series shunt. Because the piezoelectric transducer has a small capacity 

value, the damping of the low frequencies modes needs very high 

values for the inductance (hundreds or even thousands of Henries) and 

small resistance. That is why in this case it is used a synthetic 

inductance [9, 11].  

The dual behaviour of the transducers is also exploited in new 

mechatronic devices: the piezoelectric alternating voltage transformers 

[12].    

The characterization of a mechanical structure from the 

dynamic point of view using the power flow through the piezoelectric 

actuator was done in a theoretical manner in [13, 14]. Some 

considerations in theoretical and experimental terms are presented in 

[15]. There are many unexploited resources on the piezoelectric 

actuation topics research. A good opportunity is to use the computer 

assisted measurement of the energetic parameters from the actuation 

system, especially the absorbed active power from the electrical supply 

circuit. On this subject, the paper aims to propose a technique to 

evaluate the dynamics of a piezoelectric actuated cantilever beam. 

 

2.2 THE EXPERIMENTAL SETUP  
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In vibration engineering of the piezoelectric actuated (powered) 

mechanical systems, the use of the energetic parameters evolution 

acquired on the actuator electrical supply circuit is not completely 

brought out and seems to be limited to the description of the dynamic 

phenomena associated with the power harvesting of the modal energy 

of the environmental mechanical vibrations.  

 

Fig. 2.1: Description of the experimental setup. 

 

The research resources on this direction are underused. 

However this paper aims to demonstrate the efficiency of the computer 

assisted monitoring of the energetic parameters evolution, using a 

simple setup conceptually described in Figure 2.1, based on an 

aluminium cantilever beam (AlMgSi1 alloy, 300 x 25 x 2 mm).  Close 

by the rigidly fixed end of the beam (2 mm distance), two PZT (lead 

zirconate titanate) patches transducers PT1 and PT2 (40 x 25 x 0.5mm, 

SensorTech BM500 type, with deformation in length mode), with d31 
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polarization (d31=-175·10-12 m/V), are glued with an epoxy glue (UHU 

plus endfest 300).  The transducers can be used as actuators, if they are 

electrically supplied with a harmonic signal generator (with tunable 

voltage and frequency) for each one (using the K1 and K2 on-off 

switches). 

If a resistor Rm is placed in series in PT1 transducer supply 

circuit then the voltage uB(t) describes the current inside the transducer 

(i(t)=uB(t)/Rm, due to Ohm’s law). Using the voltages uA(t) and uB(t), 

(acquired, converted in numeric format and transmitted to a personal 

computer, with a data acquisition system based on an oscilloscope 

PicoScope Technology ADC 212/50), and some computer programmes 

(written in Matlab), it is possible to describe the evolution of the 

energetic parameters in time and frequency domain, for all the dynamic 

regimes of the cantilever beam actuated (excited) by the transducer 

PT1. 
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Fig. 2.2:  A view of the experimental setup. 

A laser position sensor ILD 2000 is used to describe the 

vibration of the free end of the beam for the first flexural mode 

(bending). The damping ratio ζ of the first mode can be tuned using an 

eddy-currents passive damper built with an NdFeB (neodymium-iron-

boron) permanent magnet placed in the proximity of the free end of the 

beam. 
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The damping 

ratio value ζ 

depends by the 

distance d. If the 

switch K3 is 

switched-on and 

K2 is switched-

off, then the 

transducer PT2 

is placed in a 

close circuit with 

a  Rs-Ls 

(resistance-inductance) shunt,  the system works as a passive dynamic 

absorber [9, 11] used to damp the high frequency flexural modes 

excited by PT1 transducer (which works as actuator). The behaviour of 

this passive dynamic absorber is mirrored in the active power absorbed 

by PT1. 

Figure 2.2 presents a view on the experimental setup. Figure 2.3 

presents a view on the rigidly fixed end of the cantilever beam with 

PT1 transducer. The PT2 transducer is glued on the opposite side of the 

cantilever beam. 

 

2.3 COMPUTER ASSISTED ENERGETIC 

PARAMETERS MONITORING 

 

 

Fig. 2.3: A view on the rigidly fixed end of the 

cantilever beam with the transducer PT1. 
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If the switch K1 is switched-on, then the instantaneous electrical 

power generated by the harmonic signal generator 1 and delivered to 

the transducer PT1 (which actuates in dynamic regime the cantilever 

beam) is given by: 

 

)t(i)t(u)t(P                                           (2.1)    

                                                         

as the result of the multiplication of the instantaneous voltage 

)tsin(U2)t(u rms     and the instantaneous current 

)tsin(I2)t(i rms   delivered by the supply circuit. Here ω = 

2·π·f  is the angular frequency of the excitation  and f is the frequency, 

φ is the phase angle,   Urms and  Irms are the root mean square values of 

the voltage and current, rmsU2   and rmsI2   are the amplitudes of 

voltage and current. 

The active electric power is calculated as the average value of 

the instantaneous power on a semi-period T/2 = 1/(2·f): 

 

 
2

T

0

2

T

0

dt)t(i)t(u
T

2
dt)t(P

T

2
P = )cos(IU rmsrms       (2.2) 

 

This is the real part of the apparent electric power which is 

absorbed and converted by the transducer PT1 (acting as actuator) in 

heating and mechanical work or mechanical power in order to excite 

the cantilever beam to vibrate on flexural mode on the frequency f.  

Here cos(φ) is called also power factor. 
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Taken into account the voltages uA(t) and uB(t) from Figure 2.1, 

converted into numerical format, and the first part of Eq. (2), the 

evolution of the active electric power can be described as: 

)t(u)]t(u)t(u[
nR

2
)t(P jB

)1l(n

1lnj
jBjA

m
s 








       (2. 3) 

With k,.....,2,1,0l   

 

Here uA(tj) and uB(tj) are the numerical values (samples) of the 

voltages uA and uB, acquired at the time tj = j·Δt, with Δt the sampling 

interval, n=T/(2·Δt) is the number of samples on a semi-period (as an 

integer)  and  ts = l·T/2 = l·n·Δt  is the time coordinate of the active 

power (sampling time), with  ts = 0, T/2,… l·T/2,......,k·T/2.  If Δt→0 

then in Eq. (2.3) the sign ≈ becomes =. In Eq. (2.3) the instantaneous 

current sample is described by: i(tj)= uB(tj)/ Rm and the instantaneous 

voltage sample is given by: u(tj)= [uA(tj)-uB(tj)], as voltage applied on 

the transducer PT1. The evolutions of the root mean square values Urms 

and Irms are described by: 

 

2

)t(umax)t(umax
)t(U

jBjA

srms


    ,  

2R

)t(umax
)t(I

m

jB

srms


         

(2.4) 

 )]1l(n[)1ln(j       k,.....,2,1,0l   

 

The evolution of the apparent power is described by: 

 

)t(I)t(U)t(S srmssrmss                              (2.5) 
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The evolution of the electrical impedance of the transducer PT1 is 

described by: 

 

)t(I

)t(U
)t(Z

srms

srms
s               if         ms R)t(Z                  (2.6) 

 

Using the Eqs. (2.2), (2.3) and (2.5), the phase angle evolution is 

described as follows: 

 

]
)t(S

)t(P
cos[a)t(

s

s
s                                              (2.7) 

 

And the evolution of the reactive power is given by: 

 

)]t(sin[)t(S)t(Q sss                                     (2.8) 

 

The sampling frequency of the energetic parameters in this last 

equations, except Eq. (2.1), is 2·f Hz. 

The common sense indicates that the dynamic behaviour of the 

cantilever beam excited by the transducer PT1 (if it is supplied with a 

harmonic voltage) should have a high influence on the evolution of 

these energetic parameters. As an example, the excitation at resonance 

on a flexural (bending) mode of the cantilever beam should imply the 

increasing of the mechanical power delivered by PT1, so the increasing 

of the active power absorbed from the electrical supply source 

(harmonic generator 1). And of course, the absorbed active power 

should be strongly dependent on the value of the excitation frequency 

[17]. 
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From the monitoring point of view, the transducer PT1 works as 

excitation system (actuator) and loading sensor. 

This paper tries to illustrate the resources of the computer aided 

research of the mechanical structures dynamics using the energetic 

parameters evolution acquired in the electric supply circuit of a 

piezoelectric transducer used for actuation. 

 

 

2.4 EXPERIMENTAL RESULTS AND DISCUSSION 

 

2.4.1 Characterization of the First Flexural Vibration Mode. 

 

In this regard, a first approach can be the experimental 

description of the cantilever beam dynamic behaviour when it is 

excited with a frequency (f=21.0085 Hz) which is very close to the first 

flexural (bending) vibration mode. 

 The transducer PT1 is used as actuator, supplied with a voltage 

uA which has a peak to peak amplitude by 8.52 V (or 3.012 Vrms as 

well). Figure 2.4 presents the evolution of the vibration elongation of 

the free end of the cantilever beam after the moment (marked with A) 

when the switch K1 is switched-on.  

The vibration amplitude starts to increase slowly (as indicates a 

zoom-in to the area marked with B) up to a maximum peak to peak 

value of 2.762 mm in C (steady-state forced response). In D the switch 

K1 is switched-off; the excitation source is suddenly removed. The free 

end of the beam continues to vibrate as a viscously damped free 



 

 

 

 

 

 

 
     

65 

 

  

vibration, using the modal energy stored inside (in E area, the 

frequency of the motion is 21.1647 Hz, the damping ratio ζ = 0.275%). 

 

Fig.  2.4: Temporal evolution of the flexural vibration elongation, 

excited on the resonance frequency of the first mode (start in A, stop in 

D, see also the chapter 2.7). 
 

The same experiment was performed and the evolution of the 

active electrical power absorbed by the transducer PT1 was calculated 

and plotted as it is described in Figure 2.5. Here the Eq. (2.3) was used 

for computer calculus, based on the acquired values of the voltages 

uA(tj) and uB(tj). A measurement resistor with Rm=1021 Ω value was 

used according to Figure 2.1. It is absolutely clear that after the 

moment A the absorbed active power increases progressively starting 
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from zero, becomes maximal in C area and suddenly drops to zero in 

the moment D.  

 

Fig.  2.5:  The evolution of the absorbed active power in the experiment 

described in Figure 2.4 (see also the chapter 2.7). 
 

There is a first conclusion drawn from Figures 2.4 and 2.5: the 

mechanical system of the cantilever beam needs time to accumulate 

modal energy inside and to increase the vibration amplitude. 

There is a second conclusion drawn from Figure 2.5: as it is 

expected [17], the evolution of the active power absorbed by the 

transducer PT1 is strongly dependent by the dynamics of the cantilever 

beam (resonant behaviour of a low damped vibration mode). 
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The amount of the absorbed active power at excitation on 21.00 

Hz frequency is 196 µW (steady state absorbed power).  A part of this 

power is converted into real mechanical power, delivered to the 

cantilever beam and used to produce mechanical work (finally 

dissipated as heating).   

 

Fig.  2.6: (a) Instantaneous voltage and current in area B from Figure 

2.5; (b) Instantaneous and active power in area B; (c) Instantaneous 

voltage and current in area C from Figure 2.5; (d) The  evolution of the 

electrical impedance of the transducer PT1 in the experiment described 

in Figure 2.4 (see also the chapter 2.7). 

Figure 2.6 (a) describes the evolutions of the voltages uA(tj) and 

uB(tj) corresponding to the B area from Figure 2.5. Using these two 

voltages the evolution of the instantaneous electrical power P(tj) and 

active electric power )t(P s  are calculated and plotted as described in 
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Figure 2.6 (b). Figure 2.6 (c) describes the evolutions of the voltages 

uA(tj) and uB(tj) corresponding to the C area from Figure 2.5. In 

comparison with Figure 2.6 (a) the increasing of the amplitude of uB(tj)  

and the decreasing of the shift of phase between  uA(tj) and uB(tj) are 

clearly indicated. The increasing of the active electrical power is 

produced essentially by the current inside the transducer PT1 and the 

angle of phase φ between the instantaneous current and voltage 

(according also to Eq. 2.2). 

Figure 2.6 (d) describes the evolution of the electrical 

impedance of the transducer PT1 during the experiment described in 

Figure 2.5. Before the moment A and after the moment D the 

impedance is theoretically infinite (the switch K1 is off, the current is 

zero). Practically, according to Figure 2.1, in the measurement circuit 

of the voltage uB(tj) the resistor Rm works as an antenna, the current  is 

extremely small but not zero. When K1 is switched-on, the electrical 

impedance drops to 85 KΩ and after that decreases slowly to the 

minimal value of 54.5 KΩ because of the dynamic behaviour of the 

cantilever beam (the mechanical impedance also decreases).  

There is a third conclusion associated with Figures 2.4, 2.5 and 

2.6 (d). The experiment is very well described using the vibration 

elongation, it is well described using the electrical power evolution but 

it is poorly described in the electrical impedance evolution. 

The vibration theory [17, 13] indicates that, around the 

resonance, the absorbed mechanical power is strongly dependent on the 

excitation frequency and the damping ratio values.  
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Fig.  2.7: The absorbed active power evolution in frequency domain 

(first flexural vibration mode) for different values of the damping ratio. 
 

Normally we should find the same dependence on the evolution 

of the electrical absorbed active power, as is indicated in the 

experimental results shown in Figure 2.7.  In Figure 2.7 there is plotted 

the experimental evolution of the absorbed active electric power in 

frequency domain around the resonance, for different values of 

damping ratio. According to Figure 2.1 the value of damping ratio ζ is 

changed by tuning the proximity distance d  between the magnet and 

the cantilever beam in the eddy-currents damper. 
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Fig.  2.8: The electrical impedance evolution plotted in the 

experimental conditions from Figure 2.7. 
 

The experimental evolutions described in Figure 2.7 are 

perfectly similar with the theoretical simulation done according to the 

researches described in [13].  The results described in Figure 2.7 prove 

that on each mode of vibration the cantilever beam works as a narrow 

band frequency mechanical modal energy absorber (less than 1 Hz 

bandwidth, here). This is an important conclusion useful in synthesis of 

the passive dynamic vibration absorbers (or tune mass dampers as well 

[19]). 

According to Eq. (2.6) it is possible to plot the experimental 

evolution of the electrical impedance of the transducer PT1 in 
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frequency domain, in the same experimental conditions from Figure 

2.7, as it is shown in Figure 2.8. This type of evolution of the 

impedance for undamped structures was already described in the 

literature [8]. There are two peaks, the minimal amplitude peak 

correspond to the resonance frequency fr (21.15 Hz), the maximal 

amplitude peak correspond to the antiresonance frequency fa (21.25 

Hz). The experimental evolution of the impedance presented by the 

undamped cantilever beam is useful to calculate the generalized 

electromechanical coupling coefficient 1PT
31K  of the transducer PT1 for 

first flexural mode, using the formula [8, 16]:  

 

2
r

2
r

2
a1PT

31
f

ff
K


 = 0.097                          (2.9) 

 

The value of this coefficient [10] is a measure of the percentage 

of total system modal strain energy converted into electrical energy by 

the piezoelectric transducer PT1 when it is used as sensor. The 

generalized electromechanical coupling coefficient 1PT
31K is smaller than 

the electromechanical coupling coefficient [10]. According to [10] the 

generalized coupling coefficient reflects the fact that the piezoelectric 

transducer is glued to the cantilever beam and is in parallel with some 

other stiffness, and thus a smaller fraction of the system strain energy is 

converted in electrical energy.     

An interesting result of the experimental research is the 

evolution of the phase angle φ between the instantaneous voltage and 



 

 

 

 

 

 

                                                                                      

72 

 

current (calculated with Eq. (2.7)) in the same experimental conditions, 

as it is indicated on Figure 2.9. 

 

Fig. 2.9: The evolution of phase angle φ in frequency domain under the 

experimental conditions from Figure 2.7. 
 

 It is clear that at resonance the phase angle φ is strongly 

decreased (the power factor cos (φ) evolution has the biggest influence 

on the active electric power evolution). According to Figure 2.9, the 

easiest way to detect the resonance of the low damped vibration modes 

is to evaluate the angle of phase evolution between the instantaneous 

voltage and the instantaneous current evolutions. 

Figure 2.10 describes the evolution of the reactive power, 

calculated according to the Eq. (2.8). As it is clearly illustrated here and 
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in Figure 2.8, the peak to peak amplitude decreases when the damping 

ratio increases. 

 

Fig.  2.10: The evolution of the electric reactive power in frequency 

domain under the experimental conditions from Figure 2.7. 
 

There is another example which proves the trustworthiness of 

the experimental research using computer assisted monitoring of the 

active electric power, according to the experimental results described in 

Figure 2.11. It is well known from the literature [16] that the calculus 

of the generalized electromechanical coupling coefficient K31, for a 

piezoelectric transducer placed on a mechanical structure can also be 

done using the resonance frequency values (on a certain mode of 

vibration) of the mechanical structure when the transducer is placed in 
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open circuit (resonance frequency fo) and short circuit (resonance 

frequency fs) with formula [10, 16]: 

 

2
s

2
s

2
o

31
f

ff
K


                                        (2.10) 

 

This is a formula with the same structure with Eq. (2.9). Eq. 

(2.10) can be used for the experimental evaluation of 2PT
31K  coefficient 

for the transducer PT2. 

 

Fig.  2.11: The evolution of the electric active power in the supply 

circuit of the transducer PT1 with the transducer PT2 in open and 

short circuit. 
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The values of the resonant frequency of the beam (first flexural 

mode of vibration) in these two circumstances can be found using the 

evolution of the active electrical power in frequency domain in the 

supply circuit of the transducer PT1, according to the results shown in 

Figure 2.11. The resonant frequency of the first flexural mode when the 

transducer PT2 is in short circuit is fs=20.925 Hz, the resonant 

frequency in open circuit is fo=21.06 Hz. Using these two values of 

frequency, the generalized electromechanical coupling coefficient 

2PT
31K  for the transducer PT2 (measured on first flexural mode of the 

cantilever beam) is calculated using Eq. (2.10), with the result: 

2PT
31K =0.113. 

This is a value close to the value calculated for PT1 transducer 

( 097.0K 1PT
31  , based on Eq. (2.9)) but using a different procedure.  

When the PT2 transducer is placed in short circuit, the modal stiffness 

is decreased, as it is clearly indicated on Figure 2.11. 

These results prove that some characteristics of the piezoelectric 

actuated cantilever beam dynamics on low frequency modes can be 

described using the evolution in frequency domain for the energetic 

parameters of actuation, with a simple experimental setup.  

 

2.4.2 Characterization of Some Transient Regimes of 

Vibration on First Flexural Mode 

 

Let us look now a new experiment under the same conditions 

used before in Figures 2.4 and 2.5, but with the harmonic signal 
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generator 1 tuned on 20.8 Hz frequency, smaller than the resonance 

frequency of the first flexural mode of the cantilever beam. The same 

Urms voltage (8.52 V) is used.  

 

Fig.  2.12: Transient regime generated by the transducer PT1, 

mirrored in vibration elongation evolution (sub-resonant harmonic 

excitation, start in A, stop in D, see also the chapter 2.7). 
 

Figure 2.12 presents the evolution of the elongation of the 

vibratory motion of the free end of the cantilever beam. Figure 2.13 

presents the evolution of the absorbed active electrical power.  

The phenomenon of low frequency variation of the vibration 

amplitude from Figure 2.12 marked with B1, B2, B3 and B4 is described 

also as the phenomenon of low frequency variation of the absorbed 

active electrical power from Figure 2.13. 
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According to the vibration theory, this phenomenon is 

absolutely normal. When the excitation starts (in A, the switch K1 is 

switched-on, the transducer PT1 is electrically supplied) two vibration 

components occur. The first component is the forced vibration response 

(20.8 Hz frequency) and the second component is the viscously damped 

free vibration (21.164 Hz frequency, as it is described also in E area 

from Figure 2.12 and Figure 2.4). 

 

Fig.  2.13: The mirroring in the active power evolution for the transient 

regime described in Figure 2.12 (see also the chapter 2.7). 
 

 The addition of these two response components with different 

frequencies generates a beating phenomenon with nodes (minimal 

vibration amplitude) when the components are out of phase (180o angle 

of phase, destructive interference), and anti-nodes (maximal vibration 
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amplitude) when the phase angle between these two components is zero 

(constructive interference). 

 

Fig. 2.14: The description of a transient regime with beating 

phenomenon mirrored in vibration elongation evolution (see also the 

chapter 2.7) 
 

The beating phenomenon is very well described in the evolution 

of the absorbed active power on PT1 supply circuit, with maximal 

peaks in anti-nodes (B1, B3, here the increasing of the vibration 

amplitude is produced by the increasing of the absorbed power) and 

minimal peaks in nodes (B2, B4, here the decreasing of the vibration 

amplitude is produced by the decreasing of the absorbed power). 
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2.4.2.1. Negative Active Power 

 

 The results of a more eloquent experiment, with important 

practical implications, are described in Figure 2.14. The transducer PT1 

is permanently supplied with a harmonic signal with the same voltage 

Urms as before, but with a frequency of 20.2 Hz (smaller than the 

resonance frequency), thus there is generated a permanently forced 

vibration.  

 

Fig. 2.15: The mirroring in the active power evolution (negative and 

positive) for the transient regime described in Fig. 2.14 (see also the 

chapter 2.7). 
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In A the free end of the cantilever beam is manually locked. At the 

moment A0 the free end of the cantilever beam is manually excited with 

a step mechanical excitation. As a result a free viscous damped 

response vibration component occurs (21.164 Hz frequency). The 

addition between this vibration and the forced vibration component 

(20.2 Hz frequency) produces a beating phenomenon, described in 

Figure 2.14 as vibration elongation evolution.  

The same experiment was performed once again; the evolution 

of the absorbed electrical active power is described in Figure 2.15. The 

beating phenomenon is clearly mirrored here. A relevant fact is that in 

anti-nodes due to the constructive interference the absorbed active 

electrical power is positive (e.g. the peaks B2, B4 etc.), and in nodes due 

to the destructive interference the power is negative (e.g. the peaks B1, 

B3, B5, etc.). On Figure 2.14 the peak B0 is generated because the DC 

(direct current) signal component delivered by the laser position sensor 

is removed by filtering in the oscilloscope (used as data acquisition 

system). 

If the absorbed active electrical power is negative as well, the 

mechanical power delivered by PT1 to the cantilever beam is negative. 

There is a question here: how could the mechanical power be negative?  

Suppose that Frms is the root mean square of the instantaneous 

harmonic force produced by the transducer PT1. Suppose that this force 

is applied in a point on the cantilever beam which has a velocity vrms 

(root mean square value of the instantaneous harmonic velocity). The 

average value of the mechanical power generated by PT1 is described 

by: 
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     )cos(vFN rmsrms                               (2.11) 

 

Here θ is the phase angle between the actuation force and the velocity. 

The mechanical power delivered by the transducer PT1 is negative if 

the phase angle between force and velocity has a value described by: 

π/2<θ<3·π/2. The mechanical power has a minimum value, negative, if 

θ = π (180 degrees out of phase between force and velocity). The 

transducer PT1 works as modal energy absorber (energy consumer), the 

vibration amplitude decreases.  

The mechanical power delivered by the transducer PT1 is 

positive if the phase angle between force and velocity has a value 

described by: -π/2<θ<π/2. The mechanical power has a maximum 

value, positive, if θ = 0. The transducer PT1 works as modal power 

supply, the vibration amplitude increases. 

According to Eq. (2.2), ( )cos(IUP rmsrms  , which has the 

same structure with Eq. (2.11)), the absorbed active electrical power 

can be negative only if the power factor cos(φ) is negative, so the phase 

angle is  π/2<φ<3·π/2. For the negative peak B1 on Figure 2.15 the 

phase angle is φ = 0.62· π (or 112.4 degrees). When the absorbed 

electrical active power is negative (in nodes), because of the direct 

piezoelectric effect the transducer PT1 works as a mechanical to 

electrical energy converter (modal energy absorber). It absorbs the 

mechanical modal strain energy of the cantilever beam. A part of this 

mechanical energy is converted into electrical energy delivered to the 

harmonic generator 1 where it is dissipated as heating. The transducer 
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PT1 works as an electrical power supply (actuated with mechanical 

strain power) and the harmonic generator 1 works as a consumer (or as 

a negative modal power supply) which eliminate the modal energy 

stored in the cantilever beam. 

Also, according to Eq. (2.2), the absorbed active electrical 

power is positive if cos(φ)>0, so if -π/2<φ<π/2. For the positive peak 

B2 on Figure 2.15 the phase angle is 66.6 degrees. When the absorbed 

electrical active power is positive, because of the inverse piezoelectric 

effect, the transducer PT1 works as an energy converter from electrical 

to mechanical. It absorbs the electrical energy delivered by the 

harmonic generator 1. A part of this electrical energy is converted into 

mechanical strain energy delivered to the cantilever beam and used to 

supply the forced vibration. The transducer PT1 works as an electrical 

power consumer and the harmonic generator 1 works as an electrical 

positive power supply. 

The negative power in the mechanical system of the beam is 

associated with the occurrence of the active damping phenomenon. 

Positive synthetic damping is generated. It is thus experimentally 

shown a possible technique for correcting the resonant amplification of 

the mechanical systems using a negative modal power supply. The 

forcing of the current-voltage phase angle at values π/2<φ<3·π/2 

ensures this behavior of the transducer PT1. 

The absorbed electrical active power is proportional with the 

transducer conductance. The conductance is the real part of the 

admittance. The admittance is the inverse of the impedance. The 

electrical impedance of the piezoelectric transducers is widely used in 
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the literature [8, 10 and 16] for the dynamic characterization. Figure 

2.16 presents the evolution of the electrical impedance of the transducer 

PT1 (calculated according to Eq. (2.6)) during the experiment of 

beating previously described in Figure 2.15. A comparison between 

Figures 2.15 and 2.16 proves that is easiest to describe, understand and 

exploit a transient regime with beating vibration using the evolution of 

the absorbed electrical active power.  

 

Fig. 2.16: The mirroring in the electrical impedance evolution for the 

transient regime described in Figure 2.14. 
 

In the definition of the electrical impedance are involved only 

the voltage and the current.  In the definition of the electrical active 

power are involved the voltage, the current and, very important, the 
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phase angle φ between the instantaneous current and voltage. If the 

voltage applied to the transducer is constant then the electrical 

impedance depends only by the current but the electrical active power 

depends by the current and the phase angle. It is better to use the active 

power to obtain information about some dynamic phenomena (e. g 

according to Figure 2.15, to detect if the transducer PT1 introduces or 

eliminates modal energy in the cantilever beam). 

 

Fig. 2.17: Transient regime with harmonic evolution of the active 

electric power absorbed by the transducer PT1 (negative and positive 

power). 
 

A transient regime with negative absorbed active power can be 

also illustrated by the following experiment, with the results shown in 

Figure 2.17. On the experimental setup formally described in Figure 2.1 

the switches K1 and K2 are switched-on (K3 is off), each of the two 
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transducers PT1 and PT2 being powered with harmonic signals with 

two different frequencies, close to each other and to the resonance 

frequency of the first flexural mode of vibration. The voltage and 

frequency applied on the transducer PT1 by the harmonic generator 1 

are: uPT1=1.27 Vrms and fPT1=21.024 Hz, the voltage and frequency 

applied on the transducer PT2 by the harmonic generator 2 are: 

uPT2=3.15 Vrms and fPT2=20.75 Hz. Thus the cantilever beam is excited 

in such a manner that a permanent beating vibration phenomenon 

occurs. The beating is mirrored in the evolution of the active electric 

power absorbed by the transducer PT1, according to Figure 2.17 (a). 

The power has a harmonic evolution, with the same frequency with the 

frequency fBV of the beating vibration nodes being:  

 

 2PT1PTBV fff 0.274 Hz                            (2.12) 

 

This frequency corresponds to a period of TBV=3.64 s, a very close 

value to the one experimentally revealed in Figures 2.17 (a) and 2.17 

(b). 

The evolution of power with maximum (positive) and minimum 

(negative) values can be explained using the same arguments as those 

presented in the physical horizon of Figures 2.14 and 2.15. The 

negative electrical active power in the dynamic systems represents an 

interesting result experimentally revealed here.  

As already anticipated, the negative active power is determined 

by the value of the current-voltage phase angle φ, by the character of its 

evolution. Figure 2.17 (b) describes the evolution of phase angle φ, 
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with regular ramp-slope excursion, linearly variable between 0 and π, 

with the same frequency as that of the power, given in Figure 2.17 

(a). This type of evolution has a very interesting explanation: the 

current from the supply circuit of the transducer PT1 has the same 

frequency with the voltage from the supply circuit of the transducer 

PT2. There is a practical example of an AC (alternating current) 

supplying circuit with different frequencies values for voltage and 

current.  

The results described in Figure 2.17 reinforce the conclusion 

that forcing the absorption of negative power (with an effect in 

reducing of the vibrations’ amplitude) is done by forcing the voltage-

current phase shift to values higher than π/2 (or π/2<φ<3·π/2).  Of 

course this is possible only if the cantilever beam vibrates; the negative 

power used for actuation always means damping.  

The implications of this approach are probably useful in what 

concerns the synthesis of a new procedure of active damping of 

vibrations based on modal negative power input actively generated 

supplying a piezoelectric transducer. A piezoelectric transducer placed 

on a vibrating structure works as an active damper if it is supplied with 

a negative electrical power supply. If the structure where the transducer 

is placed vibrates then the negative power supply should be able to self 

generate an instantaneous current and an instantaneous voltage with 

180 degrees out of phase between, on the frequency of each excited 

mode of vibration simultaneously if necessary. Of course there are 

some difficult issues concerning this procedure. The biggest future 
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challenge is to find a simple way to produce a cheap negative power 

supply unconditionally stable on a wideband of frequency.  

A resistance-inductance (R-L) series circuit (shunt) placed on 

the transducer electrodes produces passive damping [8, 9, 10] if the 

inductance is tuned properly. The R-L series circuit works as a 

narrowband passive negative electrical power supply. 

The active damping with negative power actuation is already 

available [1, 2, 7, 8 and 15], but it uses two transducers, a piezoelectric 

sensor collocated with a piezoelectric actuator and a feedback loop in 

between. The sensor is used to drive an electronic circuit which is able 

to supply the actuator with negative active power on some modes of 

vibration. For the time being this is the most efficient technique of 

active damping.  

A classical negative velocity force feedback damping system [7, 

9] with collocation of the sensor and actuator generates an actuating 

force in opposite direction with the velocity, so according to Eq. (2.11), 

a negative mechanical power is generated.  If the feedback is positive 

then the power generated by the actuator is positive, the system may 

starts to vibrate and become unstable (synthetic negative damping is 

generated). 

There is also known a technique of active damping [18] based 

on a single piezoelectric transducer placed on a mechanical structure 

but using the self-sensing principle (the transducer works as sensor and 

actuator, naturally collocated) and feedback as before. A bridge circuit 

is connected to the electrodes of the transducer. The circuit is used to 

distinguish the actuating voltage from the sensing voltage and to 
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control the actuating voltage.  For active damping the power produced 

by the piezoelectric transducer and absorbed by the structure should be 

negative. 

 

2.4.3 Characterization of a High Frequency Mode of Flexural 

Vibration 

 

The approach to characterize the dynamic behavior of the 

cantilever beam based on the evolution of the energetic parameters 

within the supply circuit of the transducer PT1 (used as actuator) may 

be completed by studying the other modes of flexional vibration on the 

same setup described in Figure 2.1. 

As an example, there are presented some experimental results related to 

a flexural vibration mode of the cantilever beam that has a frequency of 

1039.75 Hz. For this vibration mode it will also be studied the effects 

of a well-known technique of passive damping [8, 9 and 10], the using 

of the transducer PT2 as passive dynamic modal energy absorber. An 

Rs-Ls (resistor-inductor) series shunt is placed on the electrodes of the 

transducer PT2 (in Figure 2.1 the switch K1 is switched-on, the switch 

K2 is off, and the switch K3 is on). 

Formally, this absorber works just like a tune mass passive 

dynamic damper [19]. The resonant frequency of the flexural mode 

should be close to the resonance frequency within the electric circuit of 

the transducer PT2 (which acts like a series circuit of resistor-inductor-

capacitor). The inductive reactance is used to cancel the capacitive 

reactance of the transducer PT2 on the frequency of the mode in such a 
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way that the electrical impedance of the circuit is minimal (the 

impedance is equal with the resistance). If the cantilever beam vibrates 

on this mode (the transducer PT1 is used for actuation) then the 

transducer PT2 converts a part of the mechanical modal strain energy 

of the cantilever beam into active electrical energy which is dissipated 

as heating on the resistor. The transducer PT2 works as a modal 

damper, passive absorber (consumer) or passive negative mechanical 

power supply as well. 

 

Fig.  2.18: The characterization in frequency domain of a high 

frequency vibration mode with and without modal passive damping (Rs-

Ls shunt): (a) The active absorbed power evolution; (b) The evolution 

of current-voltage phase angle φ; (c) The evolution of the electrical 

impedance. 
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A series of experimental results is presented in Figure 2.18. Figure 2.18 

(a) describes the evolution of the electrical active power absorbed by 

the transducer PT1, in frequency domain, when it excites the cantilever 

beam around the frequency of this vibration mode. On the setup 

described in Figure 2.1 a measurement resistor Rm = 56 Ω is used. The 

curve marked with A refers to the evolution when the transducer PT2 is 

in open circuit (K3 is switched-off). As it was already proved, there is a 

peak of power absorption on resonance frequency.    

The curves marked with B and C refer to the evolution when PT2 and 

the external Rs-Ls shunt works as a passive absorber (K3 is switched-

on). For the evolution described with curve B the shunt uses the values: 

Rs=100.4 Ω and Ls=0.2584 H. As it is clearly indicated, the shunt 

reduces the peak amplitude, but the effect is non-optimal. The 

measured capacity of the transducer PT2 is CPT2=80.1 nF, the 

resonance frequency fRLC of the resistor-inductor-capacitor series circuit 

is given by: 

 

Hz26.1106
CL2

1
f

2PTs

RLC 





                       (2.13) 

 

A very similar behaviour to the optimal attenuation is described on 

curve C (with Rs=100.9 Ω and Ls=0.2997 H). The resonance frequency 

of the resistor-inductor-capacitor series circuit calculated with Eq. 

(2.13) is fRLC =1027.21 Hz, close to the frequency of the flexural 

vibration mode of the cantilever beam (1039.75 Hz). 

Figure 2.18 (b) shows the evolution of the current-voltage phase 

angle φ in the supplying circuit of the transducer PT1, Figure 2.18 (c) 



 

 

 

 

 

 

 
     

91 

 

  

shows the evolution of the PT1 electrical impedance, in the same three 

experimental circumstances (A, B and C), for the same frequency 

domain.  The influence of the electric resonance frequency value of the 

resistor-inductor-capacitor series circuit on the modal attenuation is 

very well described in power evolution (Fig. 2.18 (a)) and in phase 

angle evolution (Fig. 2.18 (b)).   

The Rs-Ls series shunt works as a negative passive electrical 

power supply. This damping technique is useful to damp high 

frequency modes of vibration. In order to damp a low frequency mode 

it is necessary to use a very high inductance (electronically generated 

[9]). According to Eq. (2.13), it is possible to achieved the damping of 

the first flexural mode (on 21.164 Hz frequency) with an Rs-Ls shunt 

with an inductance Ls=706.012 H.  

 

 

2. 5 CONCLUSIONS 

 

The evolution of the energetic parameters of actuation is useful 

in the experimental research of the mechanical structures dynamics, 

which are excited with piezoelectric actuators. For that purpose, this 

paper presents a series of experimental results obtained with simple 

research facilities, based on computer assisted techniques of data 

acquisition and processing. There was used a simple setup based on an 

aluminium cantilever beam and two PZT piezoelectric transducers PT1 

and PT2, glued near the rigid fixed end was used. Each piezoelectric 

transducer can be used as actuator if it is electrically supplied (e.g with 
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a harmonic signal generator) or as sensor. The evolution in time and 

frequency domain of the energetic parameters (active electric power, 

phase angle, impedance and reactive electric power) in the supplying 

circuit of the transducer PT1 (working as actuator and sensor) is used to 

describe some dynamic characteristics of the cantilever beam. Two 

instantaneous voltage signals acquired in the electrical supplying circuit 

and some specific computer programs written in Matlab are used to 

describe the evolution of the energetic parameters. For first flexural 

(bending) vibration mode of the cantilever beam (21.164 Hz frequency) 

a few different regimes was evaluated in experimental terms (e.g. the 

excitation at resonance, the behaviour as narrowband frequency 

mechanical modal energy absorber, beating vibration phenomena with 

positive and negative absorbed active electrical power, passive 

damping). There were done some researches on a high frequency 

vibration mode (1039.75 Hz). The efficiency of a well known passive 

damping technique of modal damping (resistor-inductor series shunt 

placed on the transducer PT2) was evaluated using the energetic 

parameters evolution in frequency domain.  

There are emphasized a series of results, precursors of 

subsequent developments, among which we propose the concept of 

vibration damping with negative modal power actively generated. This 

concept -as a big challenge for our future researches- can be used 

probably to damp some modes of a mechanical structure using a 

piezoelectric transducer placed on the structure and a negative active 

power supply. This power supply should be able to detect the frequency 

and the phase of each excited mode of vibration (using the transducer 
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as sensor) and to push the transducer (used as actuator) to deliver 

negative strain mechanical power on those modes, simultaneously if 

necessary. This is possible if, for each excited mode, the transducer is 

electrically supplied with an instantaneous voltage and an instantaneous 

current with π angle of phase between (180o out of phase), both having 

the same frequency with the vibration mode.  

Some unpublished experimental research provides similar results in the 

evaluation of the dynamic behaviour of a cantilever beam actuated with 

an electrodynamic actuator (Lorentz force generator). 

 The computer aided energetic parameters evaluation technique 

can be used for experimental researches purposes of all electrically 

actuated systems supplied with alternating current. 
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2.7 A SUMMARY OF SOME EXPERIMENTAL 

FIGURES 

 

Some experimental figures from this paper can be reproduced 

by any reader as it is indicated below. First please download the folder 

Data paper 2 (see the download indications from preface). 

 

Figure 2.4 
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You need the folder Data Fig. 2.4. In order to obtain this figure please 

have a look on the task #2 (in chapter 2.8).  The reader is invited to 

observe that Figures 2.4 and 1.3 are very similar.  

It is possible to find-out the exactly value of the frequency of excitation 

in steady state regime (C area on Figure 2.4) by running the Matlab 

program ident2 (available in the folder Data Fig. 2.4). This program 

finds out the characteristics of a theoretical harmonic curve which is the 

best fitting for the harmonic evolution of the vibration elongation in C 

area. The both curves (theoretical in blue and experimental in red) are 

drawed on the figure generated by the program. The value of frequency 

(21.0085 Hz, already written on Figure 2.4) is written in the command 

window. 

It is also possible to find out by numerical fitting the parameters of the 

free response of the cantilever beam from E area (Figure 2.4) by 

running the Matlab program ident3 (available also in the folder Data 

Fig. 2.4). It is suppose that this free response is described in theoretical 

terms by the Eq. (1.19), written in the chapter 1.12. The program 

ident3 is able to find-out the best fitting curve which fit the 

experimental evolution and the values of the parameters involved in Eq. 

(1.19). You find the values of these parameters in the matrix d.  You 

can see the both curves on the figure generated by the program 

(experimental curve in red and the fitting curve in blue). The both 

curves are very well fitted each other.  

This experiment also confirms that the theoretical description (1.19) of 

the free response of the cantilever beam is correct. 
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The program generates in the command window the values of the 

damping ratio (%) and frequency of free response as it were also 

written on Figure 2.4. 

Try to increase the precision of the determination of the parameters 

involved in Eq. (1.19) by numerical fitting.  

 

Figure 2.5 

 

In order to obtain this Figure using Matlab please have a look on task 

#3 (in chapter 2.8). The reader is invited to observe that Figures 2.5 and 

1.4 are very similar. This proves that two different actuation systems 

act identical by the point of view of the absorbed active electrical 

power during the same dynamic phenomenon.   

 

Figure 2.6 

 

Use the programs from the folder Data Fig. 2.6. In order to obtain the 

main parts of Figure 2.6 the reader should run the Matlab program 

fig26.m from this folder. 

 

Figure 2.12 and 2.13 

 

You need the folder Data Fig. 2.12-2.13. If you run the Matlab 

program fig21213.m you should obtain a figure which contains Figure 

2.12 and 2.13. This describes the behaviour of the cantilever beam very 

similar to those already decribed in Figure 1.7. Notice that here are 
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involved two different types of actuators. In Figure 1.7 b) the beating 

phenomenon is described by the evolution of active power absorbed by 

a voice-coil actuator. Here (and in Figure 13 too) the beating 

phenomenon is described by the active power absorbed by a 

piezoelectric actuator.  

 

Figure 2.14 

 

Use the folder Data Fig. 2.14. Run the Matlab program fig214.m. You 

should obtain the main part of Figure 2.14. 

 

Figure 2.15 

 

You need the folder Data Fig. 2.15. Run the Matlab program fig215.m 

placed in this folder. You should obtain the main part of Figure 2.15. 

This figure is very similar those already shown as Figure 1.8. 

 

 

2.8 THEORETICAL AND EXPERIMENTAL WORK 

TASKS 

 

1. Perform the experimental setup described in Figs. 2.1 and 

2.2. Use the oscilloscope PicoScope 4424 (4 channels) in 

order to acquire at the same time the voltages uA and uB and 

the voltage delivered by the laser position sensor.  
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2. Perform the experiment described in Fig. 2.4 in order to 

obtain the evolution of the voltage generated by laser 

position sensor in two ways: 

- using only the oscilloscope; 

- using a Matlab program which converts the voltage in 

displacement of the free end cantilever beam;   

 In order to solve these tasks please have a look on the Matlab 

program fig24.m presented below. Running this program leads to 

getting the Figure 2.4. The file datfig24.txt and the program fig24.m 

are available in electronic format (in the folder Data Fig. 2.4). 

 

Program fig24 

clear all;close all;durata=20; 

load datfig24.txt; 

x=datfig24(:,1)/1000000; 

y=datfig24(:,2)*1.93548-8.5; 

%the constant value 1.93548 mm/mV transforms the 

voltage %delivered by laser sensor in displacement 

p=5;dim1=size(y);dim=dim1(1);k=1; 

for i=1+p:dim; 

   medy=0; 

   for j=1:p; 

      medy=medy+y(i-j)/p;   

   end 

   yfts(k)=medy; 

   xfts(k)=k*durata/dim; 

   k=k+1; 

end 

%the above part of the program (marked with bold) 

%perform the filtering of %data (moving average 

filter) 

%p is the parameter of filtering 

 

plot(xfts,yfts,'k','LineWidth',1.5);hold on 



 

 

 

 

 

 

 
     

101 

 

  

k=1;for i=4821:5950;abs(k)=xfts(i)*13-6; 

ord(k)=yfts(i)*3-900; 

k=k+1;end;plot(abs,ord,'k','LineWidth',1);clear 

abs;clear ord; 

k=1;for i=53096:54317;abs(k)=xfts(i)*10-159; 

ord(k)=yfts(i)*1.7+950; 

k=k+1;end;plot(abs,ord,'k','LineWidth',1);clear abs; 

clear ord; 

k=1;for i=34482:35703;abs(k)=xfts(i)*20-222; 

ord(k)=yfts(i)/2; 

k=k+1;end;plot(abs,ord,'w','LineWidth',1.5); 

clear abs;clear ord; 

 

 The file datfig24.txt is saved from oscilloscope. First column 

describes the time (in microseconds), the second column describe the 

voltage (millivolts) delivered by the laser position sensor ILD 2000 

(see Figures 2.1 and 2.2) 

  

3. Perform the experiment described in graphical terms in 

Figure 2.5. You should acquire the voltages uA and uB during 

the experiment and to use a Matlab program similar to the 

one shown below. The file datefig25.txt and the Matlab 

program fig25.m are available in electronic format (in the 

folder Data Fig. 2.5). 

 

Program fig25 

clear all;close all;inreg=20;p=10; 

load datefig25.txt; 

l=size(datefig25); 

timp1= datefig25 (:,1);amplit= datefig25 (:,2); 

timp=timp1(1:l/2)/1000000; 

tens=amplit(1:l/2)/1000; 

l1=l(1)/2+1;curent=amplit(l1:l)/(1000*1020); 
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%this value (1020) is the resistive shunt 

putinst=tens.*curent; 

 

%Here below it is calculated the value of 

frequency of the harmonic signal 

k=0; 

for i=1:l1-2; 

   prod=tens(i)*tens(i+1); 

   if prod<0;k=k+1;flag2(k)=i;else end 

   if k==1;flag1=i;else end 

   end 

   frecv=k/(2*(timp(flag2(k))-timp(flag1))) 

   for i=1:k-1 

      dif=flag2(i+1)-flag2(i);pont=0; 

      if dif<5;pont=1;else end; 

   end;pont 

%if pont > 0 this means that the calculus of 

%frequency is wrong (please explain that) you 

should perform once again %the experiment 

incr=1*(l(1)/(2*inreg*frecv)); 

sup=round(incr);per=inreg/(l1-1)*incr; 

   fil=5; 

   ji1=size(flag2);ji=ji1(2); 

   medt1=0;for i=1:ji-1; 

    timpef(i)=i*per/2; 

   end; 

   for i=1:ji-1;max=-1000;medp=0; 

       for k=flag2(i):flag2(i+1); 

         medp=medp+putinst(k); 

       end; 

     putactf1(i)=medp/(flag2(i+1)-flag2(i)); 

    end 

matdefil=putactf1;d=size(matdefil);k=1; 

for i=1+p:d(2); 

   a=matdefil(i-p+1:i);b=timpef(i-

p+1:i);meda1=sum(a);meda2=sum(b); 

   matfil(k)=meda1/p;timpeff(k)=meda2/p;k=k+1; 
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end 

for i=1:p;matfil(i)=matfil(p+1); 

timpeff(i)=timpeff(p+1);end; 

putactff1=matfil;clear matdefil;clear matfil; 

plot(timpeff,putactff1,'k','LineWidth',1.5); 

axis([0 20 -.00001 0.0002]) 
 

The instructions marked with bold characters allow determining 

the value of frequency of voltages uA and uB. 

In order to find by calculus the value of active electrical power 

absorbed by PZT actuator in steady-state between the levels D and E 

(on Figure 2.5) it is useful to run immediately after the program fig25 

this section of program:  

 

dim=size(timpeff);dim1=dim(2); 

increment=1/(timpeff(dim1)/dim1); 

limtime1=9.5;limtime2=12.5; 

limtime3=14;limtime4=17; 

med1=0;k=0; 

limtime1a=round(limtime1*increment); 

limtime2a=round(limtime2*increment); 

 for i=limtime1a:limtime2a; 

    med1=med1+putactff1(i);k=k+1; 

end 

med1=med1/k;med2=0;k=0; 

limtime3a=round(limtime3*increment); 

limtime4a=round(limtime4*increment); 

for i=limtime3a:limtime4a; 

    med2=med2+putactff1(i);k=k+1; 

end 

med2=med2/k;med1-med2 

 

The result (1.9617e-004 W) is already written on figure 2.5. 

This is the active electrical power absorbed by PZT actuator when it is 

supplied on the resonance frequency on first flexural mode of the free 
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end of the cantilever beam. In the same manner it is possible to find the 

value for any other frequency of excitation. Of course it is possible to 

add the last section to the program fig25. 

 

 

4. Based on the discussion from task #3 you are invited to 

perform the experiments which allows you to draw 

something similar to Figure 2.7 and 2.11. Note that 

experiments should be made in such a way to avoid the 

transient regimes. For each frequency you should put K1 

switch (see Figure 2.1) in position on. Wait a while until the 

transient regimes (see Figures 2.11 and 2.13) disappears. 

Start the data acquisition (on the oscilloscope) and after that 

switch-off the K1 switch. Use the program fig25 in order to 

find out the active power absorbed. Of course you should set 

the temporal limits from the program, see previously the 

instructions: 
 

limtime1=9.5;limtime2=12.5; 

limtime3=14;limtime4=17; 

 

5. Based on the discussion from task #2 performs the 

experiments which led to the results of the graphs shown in 

Figures 2.12 and 2.14. 

 

6. Based on the discussion from task #3 performs the 

experiments which led to the results of the graphs shown in 

Figures 2.13 and 2.15. 
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7. Optionally the reader can try creating programs that allow to 

find out the evolution of impedance (Figure 2.8), phase shift 

between voltage and current (Figure 2.9) and reactive power 

(Figure 2.10). 
 

8. Perform the experiment described in Figure 2.14 (beating 

phenomenon mirrored in the evolution of the elongation of 

first flexural mode) and Figure 2.15 (the same phenomenon 

mirrored in the evolution of the active electrical power 

absorbed by the piezoelectric actuator). Both evolutions 

should be registered in the same time. Put on the same figure 

 

Fig.  2.19: Beating phenomenon mirroring in the evolution 

of the vibrations of the free end of the cantilever beam and 

the active electrical power. 
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the both evolutions. You must obtain something that looks 

like the figure 2.19 (in order to obtain Figure 2.19 ask to the 

teacher the folder Data Fig. 2.19 and run the Matlab program 

DESPUT2b1). Try to formulate a hypothesis about the shift 

of phase between evolutions. As it is clearly indicated, the 

positive and negative peaks of the active power are shifted 

related to the anti-nodes and the nodes of the elongation. 
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Paper 3 

 

A STUDY ON ACTUATION POWER 

FLOW PRODUCED IN AN ACTIVE 

DAMPING SYSTEM 

 

 

 

ABSTRACT 

This paper aims to present some new features of the experimental research in 

dynamics of a closed-loop actively controlled mechanical system with collocated PZT 

sensor and actuator and a proportional-derivative regulator.  The evolution of active 

electrical power absorbed by the actuator is mainly used. A fraction of this power is 

converted into mechanical real power and delivered by the actuator to the mechanical 

system. This paper highlights the fact that derivative gain in the regulator produces a 

directly proportional synthetic damping (positive or negative) in the mechanical 

system, due to the fact that a directly proportional flow of active electrical power 

(negative or positive) absorbed by the actuator is generated. The paper proves that the 

active power flow evolution is very useful to describe the behavior of the actuator for 

some dynamic regimes (more useful than the magnitude of the electrical impedance).  
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The research was done on a setup that consists of an aluminium cantilever beam 

equipped with two PZT collocated transducers -rectangular laminar design- closely 

glued by the rigidly fixed end of the beam. The feedback between sensor and actuator 

is provided by a regulator which produces a tunable phase difference between input 

and output (equivalent to a proportional-derivative feedback). The electrical current 

and the voltage generated by the regulator and applied to the actuator are used for 

finding the values of the active electrical power absorbed by the actuator, the 

magnitude of the electrical impedance and the values of some dynamic parameters of 

the cantilever (e. g. damping ratio, damped modal frequency, etc.) due to an external 

excitation of first bending mode. A computer assisted data acquisition system and 

some new data processing techniques are used for these purposes.   

 

Keywords: Vibration, cantilever beam, piezoelectric actuation, negative 

modal power, synthetic damping. 

 

 

Nomenclature  

 

a                          Slope of linear regression of the synthetic damping 

                           [rad-1·mW-1] 

α                          Shift of phase angle between input and output voltage 

                            of the regulator [o] 

b                          Intercept of linear regression of the synthetic damping 

                            [rad-1] 

Cd                        Derivative gain [s/rad] 

Cp                        Proportional gain [] 

Cv                        Voltage gain [] 

Csd                       Synthetic damping constant [rad-1] 

Css                       Synthetic stiffness constant [rad2/s2] 
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d31                       Transverse piezoelectric coefficient [m/V] 

Δt                         Sampling interval [s] 

f0                          Undamped modal natural frequency of the first  

                             bending mode [Hz] 

φ                          Shift of phase angle between the instantaneous 

                            current and voltage [o] 

i                          Instantaneous current [A] 

Irms                      Root mean square current [A]     

K31                      Generalized electromechanical coupling coefficient [] 

kss                       Synthetic modal stiffness [N/m] 

km                       Open-loop modal stiffness [N/m] 

mm                      Open-loop modal mass [Kg] 

n                         Number of samples [ ] 

ω                        Angular frequency of harmonic excitation [rad/s] 

ω0                       Undamped natural modal angular frequency of the 

                           first bending mode [rad/s] 

ω1                       Damped natural nodal angular frequency of the first 

                           bending mode [rad/s] 

ωm                      Open-loop undamped natural modal angular  

                          frequency of the first bending mode [rad/s]                        

ωss                     Undamped synthetic angular frequency [rad/s] 

p                        Parameter of the moving average filter [] 

Pel,act                  Active electrical power [W] 

Pel,inst                 Instantaneous electrical power [W] 

Pel,react                Reactive electrical power [Var] 

Pmec,real               Mechanical real power delivered by piezoelectric  
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                         actuator [W] 

Pmec,dis              Mechanical dissipated power [W] 

Pmec,mod            Power flow generated by the modal energy stored in 

                         the cantilever beam [W] 

Ppv                   Power peak active electrical power [W] 

Pss                    Steady-state active electrical power [W] 

Rm                    Measuring resistance [Ω] 

T                      Period of the alternating current [s] 

θa                     Phase angle of origin of time for the voltage ua [
o] 

θB                     Phase angle of origin of time for the voltage uB [o] 

θs                     Phase angle of origin of time for the voltage us [
o] 

ua                     Instantaneous voltage applied to the piezoelectric  

                         actuator PA [V] 

uA                     Instantaneous voltage delivered by the regulator [V]  

uB                     Instantaneous drop of voltage on the measuring resistor 

                        [V] 

us                     Instantaneous voltage generated by the piezoelectric 

                        sensor PS [V] 

Ua,rms                Root mean square of ua voltage [V] 

Us                    Amplitude of us voltage [V] 

Ua                    Amplitude of ua voltage [V] 

UB                    Amplitude of uB voltage [V] 

Z                      Electrical impedance [Ω] 

Zc                     Steady-state impedance [Ω] 

ζ                       Damping ratio [rad-1] 

ζ1                      Damping ratio of active electrical power [ rad-1] 



 

 

 

 

 

 

 
     

111 

 

  

ζn                      Synthetic damping ratio [rad-1] 

ζsd                     Natural damping ratio [rad-1] 

 

 

3.1 INTRODUCTION 

 

The correction of the dynamic behavior of flexible mechanical 

structures with distributed mass through automated systems based on 

negative feedback from a sensor to an electric actuator using an 

electronic regulator is well known [1, 2, 3]. It seems that this type of 

correction has first been proposed in [4]. These systems are often used 

to eliminate or to reduce vibration amplitude on some resonant 

frequencies modes of the mechanical structures by active damping and 

isolation [5, 6]. The aforementioned active systems are able to generate 

and to deliver positive synthetic damping through the actuator to the 

mechanical structure.   

An obvious question is in order: how should the actuator be 

powered in order to produce synthetic positive damping in the 

mechanical structure? The first answer is provided by a long practice in 

vibration engineering: the actuator should be powered in such a way 

that the force generated and applied in a point of the mechanical 

structure is opposed to the velocity of that point. The actuator acts as a 

viscous friction force generator.  In consequence, a damping technique 

called direct velocity feedback control [7, 8, 9 and 10] was defined.  If 

the sensor and the actuator are collocated (decentralized control [5]), 

the dynamic stability is guaranteed and the regulator has a very simple 
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task: to generate a negative feedback with proportional gain (the signal 

delivered by the velocity sensor is inverted and amplified before 

powering the actuator).  

The same technique of vibration damping with collocated 

sensor and actuator is available if a displacement sensor is used. The 

regulator should produce a negative derivative feedback (the signal 

delivered by the displacement sensor is differentiated, inverted and 

amplified before powering the actuator). The same type of regulator is 

used for active vibration damping of mechanical structures (e. g. thin 

beams and plates) with PZT (lead-zirconate-titanate) laminar 

piezoelectric collocated sensor and actuator [11], as is illustrated in this 

paper. A piezoelectric sensor acts as a dynamic mechanical strain 

sensor. This strain is a description of relative deformation 

(displacement) of the mechanical structure. 

Let us consider once again the previous question: how should 

the actuator be powered in order to produce synthetic positive damping 

in the mechanical structure? Starting from the conclusion that damping 

signifies that the system dissipates modal energy it results that the 

actuator should contribute to this goal. According to previous 

discussions, this paper claims and intends to prove experimentally that 

the actuator should absorb and dissipate mechanical modal energy. It 

works as an active damping device and acts as a negative mechanical 

modal real power supply. It provides a force opposed to the velocity (or 

at least a force with phase shift between π/2 and 3·π/2 relative to the 

velocity, [12]), therefore a negative mechanical real power. This 

negative real power is delivered to the mechanical structure. In order to 
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produce a negative mechanical modal real power the actuator should be 

electrically powered exclusively by a negative active electrical power. 

This means that the active damping can be done in open-loop system 

with an actuator and a negative active electrical modal power supply 

(without any sensor). This electrical power supply absorbs and 

dissipates the mechanical modal real power from mechanical structure 

(previously converted by the actuator in active electrical power). The 

active electrical power flows from the actuator to the electrical power 

supply. The dynamic stability is guaranteed due to the fact that the 

actuator cannot be supplied with positive active electrical modal power.  

It is obvious nowadays that this type of active electrical power supply 

exists but it should be reminded that it uses a sensor placed on the 

mechanical structure. In a closed-loop damping system with collocated 

sensor-actuator and negative derivative feedback [7, 8, 9 and 10], the 

sensor and the regulator play the role of the negative active electrical 

modal power supply. In the self sensing damping technique [13, 14] the 

electronic device placed on the electrodes of the PZT transducer (acting 

as sensor and actuator) should work as a negative active electrical 

power supply. A passive shunt damping circuit [15, 16, 17, 18, 19, 20, 

21, 22 and 23], an adaptive shunt damping circuit [24] or an energy 

harvesting circuit [25] placed on the electrodes of a piezoelectric 

transducer works as a negative active electrical power supply on the 

modal frequency. The transducer acts both as a sensor and as an 

actuator. 

Any system which is built for vibration suppression by damping 

(active, passive, semi-active [18, 26] or hybrid system [27]) and using 
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electrical actuators must ensure their supply with negative active 

electrical modal power. Therefore the evolution of the active electrical 

power flow absorbed by the actuators appears to be an important topic 

of research (this is useful for the study of vibration damping). The 

aforementioned topic is mainly considered in this paper. 

Several results adjacent to the matter have already been reported 

in the literature regarding the use of active electric power (energy). 

They are related to the research concerning dynamical systems driven 

by transducers.  Some papers investigate the power requirements for 

control law and actuation in order to decrease the energy consumption 

[28, 29, 30 and 26], to select a control strategy [9], to maximize the 

power transferred to the mechanical system [31], and to maximize the 

synthetic damping [32, 30 and 26]. The latter is a very important aspect 

which must not be overlooked. Others papers deal with energy 

harvesting [25, 33] or self powered damping systems [34] using 

piezoelectric transducers. An interesting theoretical study on the flow 

of active and reactive electrical power to the piezoelectric actuator 

inside a closed-loop system for active damping of mechanical 

structures is presented in [35].  The paper [19] focuses on the treatment 

of the electrical energy produced by piezoelectric transducers using a 

network of passive electrical elements.  A new method of passive 

damping is described in [21 and 22]. It is based on the generalized 

principle of virtual power. 

The work presented below aims to investigate experimentally 

the evolution of active electrical power absorbed by the actuator inside 

a closed-loop feedback system for active damping with PZT 
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piezoelectric sensor and actuator (collocated, laminar rectangular 

design, closely bonded by the rigidly fixed end of a cantilever beam). A 

phase shifter with adjustable phase is used as regulator inside the 

closed-loop. This type of regulator was already proposed in [36 and 

37]. It will later be shown in the current paper that a phase shifter 

works as proportional and derivative regulator.  

This paper especially illustrates the operating regimes with 

positive and negative active electrical power absorbed by the actuator 

(generated by positive and negative derivative feedback) and their 

influence on the dynamics of the beam (negative and positive synthetic 

damping is generated). A study on the evolution of the magnitude of 

the electrical impedance of the actuator and the evolution of the 

mechanical synthetic stiffness generated by proportional feedback was 

also performed. The paper highlights some new features concerning the 

usage of the active electric power evolution in terms of characterization 

and understanding the dynamics of mechanical structures actively 

controlled. 

 

3.2. THE EXPERIMENTAL SETUP 

 

The research was done on an experimental setup conceptually 

described in Figure 3.1, with a picture shown in Figure 3.2. The 

mechanical system consists of a cantilever beam 1 (300 x 25 x 2 mm, 

made of aluminium alloy AlMgSi1). A piezoelectric actuator 10 (PA) 

and a piezoelectric sensor 11 (PS) are glued -as collocated transducers- 

in close proximity of the rigidly fixed end, on each side of the beam. 
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The sensor and the actuator are identical, made of PZT (lead-zirconate-

titanate), laminar rectangular design, 40 x 25 x 0.5mm, SensorTech 

BM500 type, with deformation in length mode, d31 polarization (d31=-

175·10-12 m/V) and opposite poling directions. 

 

Fig. 3.1: A description of the experimental setup. 

 

 According to [12] the generalized electromechanical coupling 

coefficient of the sensor is K31 = 0.113 (the ratio between the real parts 

of input mechanical power and output electrical power) and of the 

actuator is K31 = 0.097 (the ratio between the real parts of input 

electrical power and output mechanical power). This type of setup 

(with surface-bonded piezoelectric transducers) is commonly used in 

experimental research [24, 17, 30, 26, 12, 36 and 10] and suggestions 

for usage in some industrial applications have already been made [38]. 

The voltage us generated by the sensor (if a bending mode of the 

beam is excited) is used as input signal in a regulator 8. The regulator 

generates a voltage uA and a current i. The current flowing through a 

series circuit consists of the actuator PA and a measuring resistor Rm 

(12 KΩ) to the electrical ground (GND). This way the feedback loop is 
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closed. The regulator (an electronic device manufactured in the 

laboratory, supplied by a DC power supply 7) performs the functions of 

a phase shifter with manual phase adjustment between output and input 

voltages. The voltage drop uB across the resistor Rm is used to measure 

the current i (i=uB/Rm due to the Ohm’s law). The voltage drop ua 

across the actuator PA is calculated as follows: ua=uA-uB. The voltages 

us, uA and uB are collected by a data acquisition system 9 (a PicoScope 

4424 oscilloscope with 12 bits resolution, 1% accuracy) and delivered 

in numerical format to a personal computer 4. These voltages are used 

for computer aided calculus (using Matlab) of the active electrical 

power absorbed by the actuator PA and for finding out some dynamic 

characteristics of the free response of the beam excited on the first 

bending mode of vibration (e.g. the damped modal frequency and 

damping ratio). A simple voice coil actuator placed on the free end of 

the beam is used in order to excite the first bending mode of vibration. 

It consists of a fixed coil (marked with 2 on Figure 3.2) and a 

permanent magnet (3 on Figure 3.2, neodymium-iron-boron, with axial 

magnetization) placed on the beam. The magnet is placed without 

physical contact inside the coil, centered [12]. The interaction between 

the current flow in the coil and the magnetic field generates a Lorentz 

force used to actuate the cantilever beam.  The coil is supplied by a 

charged electrolytic capacitor C (1500 μF) when a switch K is switched 

from position 1 to position 2. In position 1 the capacitor is electrically 

charged (via the DC power supply 7). If the switch K is switched in 

position 2 the electric charges accumulated in the capacitor generates a 

short pulse of current in the coil. A pulse excitation of the cantilever 
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beam is generated. The voice coil actuator can also be used to produce 

a harmonic force if the coil is supplied with a harmonic voltage (the 

diode D should be removed). 

 

Fig. 3.2: A picture of the experimental setup with zoom-in on the 

actuator and the voice coil. 
 

Figure 3.2 shows a picture of the experimental setup. Number 1 

marks the cantilever beam, 2 marks the fixed coil, 3 - the permanent 

magnet placed on the free end of the beam, 4 -  the computer, 5 - a laser 

position sensor ILD 2000 (useful for bending vibration elongation 

measurement [12]), 6 - a harmonic signal generator, 7 - the DC power 

supply, 8 - the regulator, 9 - the data acquisition system, 10 - the 

piezoelectric actuator PA (the piezoelectric sensor PS marked with 11 

on Figure 3.1 is glued on the opposite side of the beam), 12 - a 

solderless breadboard (here are placed the resistor Rm, the capacitor C,  
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the switch K and some connecting wires). 

 

 

3.3 THE EXPERIMENTAL PROCEDURE 

 

3.3.1 Short overview of the experimental procedures. 

 

The monitoring of the active electrical power absorbed by the 

actuator uses the instantaneous values of voltage ua(t) and current i(t). 

These values are calculated using the voltages uA(t) and uB(t), collected 

and converted in numerical format by the data acquisition system and 

stored inside the computer. The instantaneous electrical power is the 

mathematical product of ua(t) and i(t) [12, 39]. The active electrical 

power (also called real power) is usually obtained as a mean value of 

the instantaneous electrical power [12, 39]. This paper proposes a new 

method of calculating the active power: numerical filtering of the 

instantaneous power using a moving average filter (band-stop filter).  

The active power flow in the actuator is created by the 

mechanical excitation of the cantilever beam and the regulator (due to 

the derivative feedback). By the above described means mainly the first 

bending mode of vibration it is excited (impulse excitation). The free 

response of the cantilever beam (mirrored in the evolution of ua(t), us(t) 

and i(t)) is used for experimental research. The shift of phase generated 

by the regulator (between ua(t) and us(t)) determines the character of 

free response of the beam (the damped modal natural frequency and the 
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damping ratio). The phase shifting is equivalent to a proportional and 

derivative feedback control law between the sensor and the actuator. 

 The proportional gain of the feedback loop generates synthetic 

mechanical modal stiffness (revealed experimentally in the evolution of 

the frequency of the free response). The derivative gain of the feedback 

loop generates synthetic mechanical modal damping (revealed 

experimentally in the evolution of the damping ratio of the free 

response). It will be experimentally demonstrated that in order to create 

synthetic modal damping (positive or negative) the actuator absorbs 

active electrical power (negative or positive), generated by a positive or 

a negative derivative gain in the feedback closed-loop (the poling 

direction of actuator and sensor are opposite). The viscously damped 

free response of the cantilever beam is described by the evolution of the 

voltage us(t) delivered by the sensor, or by the supplying voltage ua(t) 

of the actuator or by the evolution of the current i(t).  A computer aided 

method for signals fitting was developed in order to find out the 

amplitude, the frequency the damping ratio and the angle of the phase 

related to the origin of time for ua(t) and i(t). The value of the shift of 

phase between ua(t) and i(t) and the active electrical power can be used 

to calculate the reactive electrical power delivered to the actuator.   

 

3.3.2 Some considerations on the behavior of the regulator. 

 

Let us consider that the voltage us(t) generated by the sensor PS 

has a harmonic evolution, written as: us=A·sin(ω·t). This voltage is 

generated if the voice coil actuator (Figures 3.1 and 3.2) is supplied 
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with a harmonic voltage having the angular frequency ω (the diode D 

should be removed). A bending vibration is generated. The voltage 

drop ua on the actuator PA can be written as: 

 

                                     )tsin(ACu va                             (3.1) 

 

Here α is the shift of phase generated by the regulator and Cv is 

the voltage gain (in the experiments revealed in this paper Cv ≈ 1, it has 

a light variation depending on α, because of the measuring resistor Rm). 

The voltage drop ua can be rewritten as it follows: 

 

dt

)u(d
CuCu s

dspa 
 
with )cos(CC vp 

 
and 

)sin(
C

C v
d 


                                          (3.2) 

 

According to Eq. (3.2) the phase shifter works as a proportional 

and derivative regulator with proportional gain Cp and derivative gain 

Cd (both gains depending on α). Taking into account the fact that the 

sensor and the actuator have different poling directions, the following 

observations can be made. If Cp > 0 (or Cp < 0) the proportional 

feedback is negative (positive); it will generate a synthetic positive ( 

negative) mechanical stiffness. If Cd > 0 (or Cd < 0) the derivative 

feedback is negative (positive); it will also generate a synthetic positive 

(negative) mechanical damping. The regulator behaves identically if the 

input us(t) is an exponentially damped periodic voltage due to an 

impulse excitation of the first bending mode of vibration of the 
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cantilever beam. All these considerations are fully confirmed in this 

paper. 

 

 

3.3.3 A strategy for monitoring the active electrical power. 

 

As it has been said before the instantaneous electrical power 

delivered to the actuator PA is written as: 

  

      )t(u)]t(u)t(u[
R

1
)t(i)t(u)t(P BBA

m

ainst,el            (3.3) 

 

Suppose that in the same conditions as those discussed above 

for the regulator, the instantaneous voltage drop on the actuator ua(t) 

and the current i(t) are described as:   

 

)tsin(U2)t(u rms,aa  
 
and  )tsin(I2)t(i rms     

                                                                                                           (3.4) 

          

Here Ua,rms and Irms are the root mean square values of the 

voltage and current [12], rm s,aU2  and rmsI2   are the amplitudes 

of voltage and current, φ is the shift of phase between instantaneous 

voltage and current. 

 If the angular frequency ω is constant, then the active electrical 

power Pel,act is described as the average value of the instantaneous 

power calculated on a semi-period T/2 = 2π/ω as follows: 
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                (3.5) 

In Eq. (3.5)  k =0, 1, 2,….., n , with n the total number of 

samples, tk=k·T/2 is the time value of the sample, T/2 is also the 

sampling interval, or 2/T is the sampling rate.  

By solving the integral from Eq. (3.5) for the semi-period k the 

following result is obtained: 

 

)]t(cos[)t(I)t(U)t(P kkrmskrms,akact,el 
               

(3.6)
 

 

In Eq. (3.6) cos[φ(tk)] is called power factor. This relationship 

helps to explain the concept of positive and negative active electrical 

power. Ua,rms(tk) and  Irms(tk) are positive quantities and this brings up 

the fact that if the power factor is negative the active electrical power 

Pel,act is negative. This means that Pel,act flows from actuator to 

regulator. If the power factor is positive Pel,act is positive, flowing from 

regulator to the actuator. 

Using a technique for determining the values φ(tk), the reactive 

electrical power absorbed by the actuator PA can be written as: 

 

                           
)]t(tan[)t(P)t(P kkact,elkreact,el 

                
 (3.7)  

 

It is relative difficult to calculate the active electrical power 

using Eq. (3.6). In [12] a numerical method of calculus of Pel,act based 
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on Eq. (3.5) was introduced.  This method has a disadvantage: the 

sampling rate of Pel,act is small, only 2/T s-1.   

A new numerical method is described here. It is mathematically 

proved (also by numerical simulation) that the instantaneous electrical 

power Pel,inst from Eq. (3.3) (with ua(t) and i(t) given in Eqs. (3.4)) has 

two components.  

A first component is constant or has a low speed variation: this 

is the active electrical power Pel,act. A second component [12] is 

periodical, it has the angular frequency 2·ω. This new method of 

calculus of Pel,act consists of a complete removal of the second 

component by numerical filtering of  Pel,inst using a band-stop filter. The 

active electrical power is calculated using a simple moving average 

filter (which also works as a band-stop filter) as it follows: 

  





j

pji
iinst,eljact,el )t(P

p

1
)t(P  with  j = p+1, p+2,…..n         (3.8) 

 

In Eq. (3.8) Pel,act(tj) is the current numerical value (sample) of 

the active electrical power (the output of the filter), Pel,inst(ti) is the 

current numerical value (sample) of the instantaneous electrical power 

written according to Eq. (3.3), tj=j·Δt and ti=i·Δt, are the time 

coordinates, Δt is the sampling interval, n is the number of samples. 

The filter parameter p is defined as the integer part of the ratio T/(2·Δt). 

The sampling rate of numerical description of active electrical 

power, instantaneous electrical power, instantaneous voltage ua and 

current i is the same: 1/Δt >>2/T.  
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The filter described in Eq. (3.8) can be implemented using the 

Matlab instruction: pelact=smooth(pelinst,p); with a good 

approximation. 

Here pelact and pelinst are the names of a single column 

matrix which contains the numerical values of Pel,act and Pel,inst and p is 

the value of filter parameter previously defined. 

The real mechanical power Pmec,real delivered by the actuator to 

the cantilever beam is only a small part of the active electrical power 

Pel,act absorbed by the actuator. The ratio K31=Pmec,real/Pel,act is the 

generalized coupling coefficient of the actuator (K31=0.097, according 

to [12]). Therefore all dynamic phenomena reflected in the evolution of 

mechanical power absorbed by the cantilever beam via the actuator PA 

can be investigated using the active electrical power monitoring. All 

these theoretical considerations remain valid if the voltage and current 

have periodic non-harmonic time evolution. 

 

3.3.4 Experimental resources of the signals generated in the 

closed-loop feedback system as result of the free response of 

the cantilever beam. 

 

The majority of experimental research results are based on the 

resources offered by the evolution of us, ua and uB voltages generated as 

a consequence of the viscous damped free responses on the first mode 

of vibration of the cantilever beam. These responses are generated by 

the impulse excitation produced by the voice coil actuator. Different 
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values of shift of phase α generated by the regulator are used. Figure 

3.3 (a) presents an experimental evolution of these voltages for 

α=85.33o.  Figure 3.3 (b) presents a zoom in on A area, close to the 

excitation moment. Figure 3.3 (c) presents a zoom in on B area. 

According to Figure 3.3 (b) there is a supplementary mode excited, but 

it is very quickly damped. Finally the free responses are related only to 

the first bending mode (according to Figure 3.3 (c)). All three voltages 

are used to find out the active electrical power evolution by calculus 

(Eqs. (3.5) or (3.8)).  

 

Fig. 3.3: (a) A free viscous damped response on first bending mode 

mirrored in time evolution of us, ua and uB voltages (α=85.33o, 

negative derivative feedback); (b) A zoom in on A area; (c) a zoom 

in on B area (see also the chapter 3.7). 
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All three voltages have a well known theoretical description 

written bellow as instantaneous numerical values: 
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

     
 

(3.9) 

 

Here Us, Ua and UB are the amplitudes at ti=0, ζ is the modal 

damping ratio, ω0 is the undamped modal natural angular frequency, 

2
01 1     is the damped modal natural angular frequency, θs, 

θa and  θB are the values of phase angle at origin of time (ti=0). The 

parameters ζ, ω0 and ω1 are evidently the same for all three voltages, ω0 

≈ ω1 because ζ has a very small value. In order to have a pure viscous 

damped response of the cantilever beam on the first bending mode, the 

origin of time (ti=0) involved in Eqs. (3.9) is delayed with td=0.15 s 

from the moment of start of excitation. 

A numerical method of computer aided data processing (curve 

fitting of experimental evolution for us, ua and uB voltages from Figure 

3.3) was developed in order to find out with good accuracy the values 

of the parameters used in Eqs. (3.9). The values of these parameters are 

useful to calculate: the values of ω1 and ω0
 ,  the phase shift and the 

gain generated by the regulator (α=θa-θs and Cv=Ua/Us, useful to find 

the values of proportional gain Cp=Cv·cos(α) and derivative gain Cd= 

Cv·sin(α)/ω1), to prove experimentally that the proportional gain Cp 
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produces synthetic modal stiffness (ω0 depends on Cp), to prove 

experimentally that the derivative gain Cd produces synthetic modal 

damping (ζ depends on Cd), to determine the active electrical power 

flow in the actuator PA, to calculate the phase shift φ between 

instantaneous voltage ua(ti) and current i(ti) applied on the actuator 

(φ=θB-θa), and to calculate also the value of filter parameter p involved 

in Eq. (3.8)).   

 

 

3.4. EXPERIMENTAL RESULTS AND DISCUSSION 

 

3.4.1 Negative active electrical power flow towards actuator 

generated in the closed-loop feedback system 

   

As already anticipated, a negative active electrical power flow 

between regulator and actuator occurs if the derivative gain Cd is 

positive (0<α<π ) and if the cantilever beam is excited in order to 

vibrate on the first bending mode. 

Using the evolution of the voltages ua and uB already described 

in Figure 3.3 due to an impulse excitation (α=85,33o, Cv=1.07, 

ω1=110.25 rad/s, ζ=0.00803 rad-1(or 0.803%), Cd is closed to the 

maximum value, Cp is closed to zero), it is easy to determine by 

calculus the evolutions of the instantaneous electrical power (Eq. (3.3)) 

and electrical active power (Eq. (3.8)). Figure 3.4 (a) presents the 

evolution of the instantaneous electrical power absorbed by the actuator 
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as a result of impulse excitation of the cantilever beam in the conditions 

mentioned above. Figure 3.4 (b) presents a zoom in on A area with the 

instantaneous electrical power and active electrical power evolution. 

Figure 3.4 (c) presents the evolution of the active electrical power as a 

result of numerical filtering of the instantaneous electrical power given 

in Figure 3.4 (a) (with ω1 = 2·π·17.54 rad/s, Δt=0.1 ms, p=282). In 

order to remove the influence of the second mode excited on the active 

electrical power evolution (Figure 3.3 (b)), the instantaneous electrical 

power is filtered using the Matlab instructions: pelact = 

smooth(pelinst, 2*p);pelact=smooth(pelact,2*p); 

 

Fig. 3.4:  (a) Time evolution of instantaneous electrical power 

absorbed by the actuator during the experiment described in Figure 

3.3; (b) A zoom in on A area; (c) Time evolution of the active 

negative electrical power (see also the chapter 3.7). 
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It is obvious that the active electrical power absorbed by the 

actuator is negative (the power factor is negative: cos(φ)=-0.723, 

φ=136.35o). There is a negative peak value of electrical active power 

Ppv= -35.4 μW. After the peak the active electrical power should 

theoretically have an exponential evolution to zero (taking into 

consideration Eqs. (3.9), (3.3) and (3.8)), described as: 
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  21                   

(3.10) 

                        
 

This is observed with good accuracy in the graphic result given 

in Figure 3.4 (c). The curve fitting of experimental evolution produces 

the values of the parameters involved in Eq. (3.10):  ζ1=0.0164 rad-1 

(ζ=0.00803 rad-1) with ζ1 ≈ 2·ζ, and P0 = - 32.04 μW (with P0 ≈ Ppv). 

This also proves that the phase shift φ and the magnitude of the 

electrical impedance of the actuator are constant (as we shall see later). 

A negative power flow towards the actuator means that the 

actuator works as a damper: it generates positive synthetic mechanical 

modal damping.  A simple experiment can prove this. In conditions 

similar to those used above, the voice coil actuator (Figure 3.1) is 

supplied with a pure harmonic voltage on 17.58 Hz frequency 

(practically the frequency of first bending mode of the cantilever 

beam). The elongation of the vibration of the free end of the beam is 

measured with a laser position sensor ILD 2000 (marked with 5 on 

Figure 3.2). Figure 3.5 (a) presents the evolution of the vibration 

elongation with the feedback loop opened (no synthetic damping). In A 
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the supplying circuit of the voice coil actuator is switched-on (the 

amplitude of forced vibrations increases slowly, the cantilever beam 

needs time to accumulate modal energy). In B the supplying circuit is 

switched-off. Afterwards, the modal energy stored in the beam is 

eliminated during the free viscous damped vibrations (described in C 

area).  

 

Fig. 3.5: (a) Forced vibration (A and B areas) generated by 

harmonic excitation on the frequency of resonance, free damped 

response in C area (open-loop); (b) The same experiment in closed-

loop feedback (α=85.33o) see also the chapter 3.7. 
 

Figure 3.5 (b) presents the evolution of the vibration elongation 

in the same conditions (see A1, B1 and C1 marks) but with the feedback 

derivative loop being closed (a positive synthetic damping is 
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generated). The maximum amplitude of forced vibration (lateral 

displacement) at resonance is smaller in Figure 3.5 (b) because of the 

positive synthetic damping. The damping ratio ζ of the first bending 

mode can be deduced experimentally by free response data fitting (the 

elongation evolution from C and C1 areas).  It has the value ζ =0.41% 

(or 0.0041 rad-1), in Figure 3.5 (a) (natural mechanical damping) and ζ 

=0.78 % (or 0.0078 rad-1) in Figure 3.5 (b) (natural and synthetic 

damping).   Because Cp is close to zero (no synthetic stiffness), the 

frequency of the free responses is practically the same.  

 

Fig. 3.6: Time evolution of the active electrical power absorbed by 

the actuator during the experiment described in Figure 3.5 (b). 
 

The evolution of the active electrical power absorbed by the 

actuator during the experiment described in Figure 3.5 (b) is presented 
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in Figure 3.6. As expected, the active electrical power is permanently 

negative. The DC power supply 7 and the regulator 8 works as a 

negative modal power supply driven by the piezoelectric sensor 11. As 

expected, in C1 area (free response of the cantilever beam mirrored in 

the active electrical power evolution) the active electrical power has an 

exponential evolution with ζ1 =1.58 % (with ζ1 ≈ 2·ζ, the same result as 

before). The evolution of power between A1 and B1 should be 

correlated with the evolution of power absorbed by the voice coil 

actuator [39]. A part of the modal power delivered by the voice coil 

actuator to cantilever beam is eliminated by the piezoelectric actuator 

PA. 

 

Fig. 3.7: Time evolutions of active electrical power for several 

values of shift of phase α, due to an impulse excitation of the first 

bending mode (negative derivative feedback), see also the chapter 

3.7. 
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According to Eq. (3.2), if 0<α<π then Cd > 0 and the regulator 

works as a negative active electrical modal power supply. This power is 

converted by the actuator in negative mechanical modal power supply 

delivered to the cantilever beam. The experimental results (Figure 3.7) 

partially confirm the theory. Figure 3.7 presents the evolution of the 

active electrical power (numerical filtered) due to the impulse 

excitation of the cantilever beam for several different values of shift of 

phase α. The table drawn in Figure 3.7 indicates the values of α, φ and 

damping ratio ζ for each curve. For each of the curve, excepting the 

curve #8, the absorbed active electrical power is negative. For curves 

#5, #6 and #7, even if α<0 (Cd<0, the absorbed active power should be 

positive, φ should be bigger than 3π/2) however φ<3π/2 and the 

absorbed power is negative (because cos(φ)<0).  We didn't find an 

explanation of this phenomenon yet.  Moreover, the absorbed power 

should be positive because a positive power produces a negative 

synthetic damping and the damping ratio decreases. This happened for 

curves #5, #6 and #7 the damping ratio being smaller than ζ=0.41% 

(the open-loop damping ratio value revealed in Figure 3.5 (a)).   

 

3.4.2 Positive active electrical power flow towards PA actuator 

generated in the closed-loop feedback system.  

 

There is a first condition for generating a positive active 

electrical power flow between the regulator and the actuator: a positive 

derivative feedback between the sensor and the actuator. This means 

that the derivative gain Cd is negative. There is a second condition: the 
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cantilever beam vibrates on the first bending mode (free or forced 

response) due to an external excitation. Due to a positive active 

electrical power flow a negative synthetic modal damping is generated, 

the modal damping ratio ζ of the first bending mode decreases. 

It is possible to obtain a negative derivative gain Cd if the phase 

shift generated by the regulator is located between the limits π<α<2π.  

The regulator works as a positive active electrical modal power 

supply (-π/2<φ<π/2 with cos(φ)>0, see a first example: the curve #8 on 

Figure 3.7), converted by actuator into positive mechanical modal 

power supply delivered to the cantilever beam.  

 

3.4.2.1 Positive active electrical power flow with dynamic 

stability  

  

Due to the positive derivative feedback, the cantilever beam 

keeps or does not keep the dynamic stability. A dynamic system 

actuated in closed-loop is stable if it is able to completely eliminate all 

the modal energy stored inside after any external perturbation ceases. If 

the negative synthetic damping does not cancel the natural (structural) 

damping completely the cantilever beam keeps the dynamic stability.  

An experimental example is described below. Figure 3.8 (a) presents 

the evolution of us, ua and uB voltages generated due to an impulse 

excitation when the shift of phase of the regulator is tuned on α =-

52.33o (Cd <0).The damping ratio of the first mode is now very small: 

ζ=0.083 % (compared to the value of the damping ratio without 

feedback: ζ=0.41 %, revealed in Figure 3.5 (a)). There are two details 
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of Figure 3.8 (a): a zoom in on A area (described in Figure 3.8 (b)) and 

a zoom in on B area (described in Figure 3.8 (c)).  In Figure 3.8 (b) we 

highlighted the fact that an excited second mode of vibration (105 Hz 

frequency) is very quickly damped. In Figure 3.8 (c) the shift of phase 

relationships between the voltages us, ua and uB is highlighted (a 

comparison with Figure 3.3 (c) is indicated). The dynamic system of 

the cantilever beam is stable because all three voltages finally becomes 

zero. 

 

Fig. 3.8: (a) A free viscous damped response on first bending mode 

mirrored in time evolution of us, ua and uB voltages (α=-52.33o, 

positive derivative feedback); (b) A zoom in on A area; (c) a zoom in 

on B area (see also the chapter 3.7). 
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Figure 3.9 (a) describes the evolution of the instantaneous and 

active electrical power flow to the piezoelectric actuator during the 

previous experiment. Figure 3.9 (b) describes a zoom in on A area. 

Figure 3.9  (c) presents only the evolution of the active electrical 

power. As expected, the active electrical power absorbed by the 

actuator is positive (the power factor is positive: cos(φ)=0.98, φ=-

10.78o) and it has an exponential evolution to zero (ζ1=0.166 % with 

ζ1=2·ζ) with a peak value Ppv=+21μW. 

 

Fig. 3.9: (a) Time evolution of instantaneous electrical power 

absorbed by the actuator during the experiment described in Figure 

3.8; (b) A zoom in on A area; (c) Time evolution of the active 

positive electrical power (see also the chapter 3.7). 
 



 

 

 

 

 

 

                                                                                      

138 

 

Figure 3.10 presents the evolution of the active electrical power 

(always positive) due to an impulse excitation for several different 

values of the angle α (that decreases), in order to have a progressively 

decreased negative derivative gain Cd=Cv·sin(α)/ω1. A table drawn in 

Figure 3.10 indicates the values for α, φ and ζ for each curve (from #8 

to #14).  

 

Fig. 3.10:  Time evolution of the active positive electrical power for 

several values of shift of phase α, due to a pulse excitation of the 

first bending mode (positive derivative feedback), see also the 

chapter 3.). 
 

It is clear that the damping ratio ζ decreases, and the maximum 

value P0 (Eq. 3.11) value increases. There is a stability limit (α ≈ -64o). 

Below this limit the system becomes unstable.   
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3.4.2.2 Positive active electrical power flow with dynamic 

instability  

 

If the derivative gain Cd further decreases (because the shift 

angle α decreases more), the negative synthetic modal damping 

completely cancel the natural damping. The dynamic system of the 

cantilever beam becomes unstable. 

 

Fig. 3.11: Dynamic instability due a positive derivative feedback 

mirrored in time evolution of active electrical power;  #1 - free 

response of the cantilever due an impulse excitation;  #2 - evolution 

generated by self excited vibratory regime (see also the chapter 3.7). 
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If a pulse excitation is produced as before, the evolution of the 

active electrical power absorbed by the actuator has a maximum peak 

but does not evolve to zero. This is revealed in Figure 3.11, curve #1, 

for a shift of phase α = -67.74o and Ppv=31 μW. The absorbed active 

electrical power has an asymptotic (exponentially) trend to a constant 

value, positive, as steady-state value Pss (here Pss=10.95 μW). This 

means that finally, in steady-state, the cantilever beam vibrates with 

constant amplitude. The dynamic system of the cantilever beam is self 

excited in order to vibrate on the frequency of the first bending mode. 

The energy needed to power self excited vibration is provided by the 

DC power supply 7 via the regulator 8 (on Figures 3.1 and 3.2). There 

is a constant flow of positive active power to actuator, with value Pss. 

The dynamic system of the cantilever beam has an interesting 

behavior: when the feedback loop is closed (the same shift of phase as 

we previously experienced) it starts to vibrate apparently without any 

external excitation. In fact even an extremely small dynamic 

perturbation from the environment is able to initiate the vibratory 

behavior. It is expected that due to the positive derivative feedback the 

amplitude of vibration increases more and more. The evolution of the 

active electrical power absorbed by the actuator (revealed in Figure 

3.11, curve #2) is asymptotic starting from zero and also has an 

asymptotic trend to a constant, positive, steady-state value, very close 

to that of curve #1. This also means that finally, in steady-state, the 

cantilever beam vibrates with constant amplitude. 

The evolution of the amplitude of vibration in time depends on 

the balance of input and output mechanical power. The input power is 
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the mechanical real power Pmec,real  produced by the actuator (the active 

electrical power is converted into mechanical real power). This power 

depends on α, Cv and K31. The output power is the modal mechanical 

dissipated power Pmec,dis (as heating, due to friction inside the beam and 

air friction). This power depends on the modal damping ratio of the 

cantilever beam. Both powers also depend on the vibration amplitude. 

The Pmec,dis can be seen as a negative input power. If Pmec,real - Pmec,dis 

<0 the vibration amplitude decreases exponentially (and the absorbed 

active electrical power too, see curve #1 on Figure 3.11) to a steady-

state value. The cantilever beam system loses some modal mechanical 

energy stored inside. If we assume that Pmec,mod is the power flow 

generated by the modal mechanical energy, before steady-state, this 

relationship can be written:  Pmec,real - Pmec,dis +Pmec,mod=0 (here Pmec.mod 

is a positive power flow). 

If Pmec,real - Pmec,dis >0 the amplitude of vibration increases to the 

steady-state value (also the absorbed active electrical power, see curve 

#2). The modal energy stored in the cantilever system increases. 

Therefore, before steady-state, this relationship can be written: Pmec,real 

- Pmec,dis - Pmec,mod = 0 (here Pmec.mod is a negative power flow). 

In steady-state Pmec,real - Pmec,dis =0 (and Pmec,mod =0), the amplitude of 

vibration is constant, the absorbed active electrical power is constant. 

In steady-state Pel,act=Pss and Pmec,real=Pmec,dis=K31·Pss. 

In steady-state, the value of Pss (and the amplitude of the vibration too) 

depends on the value of the shift of phase α (a negative value) 

generated by the regulator and the natural modal damping of the 

cantilever beam. The dependence of Pss on the value of α is 
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experimentally proved in Figure 3.12. This Figure presents the 

evolution of the active electrical power absorbed by the actuator 

starting immediately after the moment the feedback loop with positive 

derivative gain was closed and lasting until the steady-state is achieved 

(no external excitation).  

 

Fig. 3.12: Time evolution of the active electrical power until steady 

state for several different value of phase shift α (self excited 

vibratory regimes with positive derivative feedback). See also the 

chapter 3.7. 
 

An unstable behavior with self excited vibrations on first 

bending mode is produced for each value of shift of phase α (the natural 

modal damping is constant). Finally, each steady-state is characterized 

by a different value Pss. 
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The dependence of Pss on natural modal damping is 

experimentally proved on Figure 3.13.  

 

Fig. 3.13: (a) The influence of natural damping on steady state value 

Pss; (b) The influence of natural damping on  vibration amplitude 

(positive derivative feedback with instability). See also the chapter 

3.7. 
 

As a result of the same experiment, Figure 3.13 (a) presents the 

evolution of the active electrical power absorbed by the actuator 

(positive derivative feedback with instability, α =-79.6o) and Figure 

3.13 (b) presents the evolution of vibration elongation of the free end of 

the cantilever beam. Before A the system vibrates in steady-state with 

Pss=Pss,max=0.101 mW and 0.905 mm the amplitude of vibration. In A 

the coil of the voice-coil actuator (marked with 2 on Figure 3.2) is 

placed in short-circuit. The coil and the permanent magnet placed on 
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the free end of the cantilever beam generate a viscous damping force, 

the natural modal damping of the cantilever beam having increased. In 

consequence, immediately after this moment, the absorbed active 

electrical power and the amplitude of vibration start to decrease, a new 

steady-state is installed with Pss=Pss,min=0.012 mW and 0.324 mm 

amplitude, before B. The dynamic system loses modal energy, Pmec,mod 

> 0. In B the short-circuit is removed (the coil is in open circuit), the 

damping force disappears. As a result, immediately after this moment, 

the absorbed active electrical power and the amplitude of vibration start 

to increase exponentially to the previously steady-state value (before 

A). The dynamic system receives and stores modal energy, Pmec,mod < 0. 

If the natural modal damping further increases Pss=0 and the 

instability behavior of the dynamic system disappear. As an important 

remark, this feature (Pss=0) can be considered an indicator of stability 

of a dynamic system. 

 

3.4.3 Some considerations concerning the electrical impedance 

of the actuator 

 

In vibration engineering the magnitude of electrical impedance 

is often used [11, 16 and 40] in order to characterize the behavior of a 

piezoelectric actuator (the electrical impedance can be directly related 

to the mechanical impedance of the cantilever beam [40]). However, it 

is shown below that the evolution of the active electrical power 

provides a better characterization of the dynamic phenomena in which 

the actuator is involved.  
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`The current value of the magnitude of electrical impedance of 

the actuator Z(tk) is the ratio between the amplitude of the voltage 

(Ua(tk)=
 

)t(U2 krms,a ) and the amplitude of the current (I(tk)=
 

)t(I2 krms =UB(tk)/Rm) and can be written as: 
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In Eq. (3.11) tk=k·T/2, k = 0, 1, 2…n, n is the number of samples and 

tk<tj<tk+1. The sampling ratio of the electrical impedance is 2/T.  

All previous experiments can also be described by the evolution 

of the magnitude of electrical impedance of the actuator. The 

experiment from Figure 3.5 (b) (the evolution of vibration amplitude) 

described in Figure 3.6 (the evolution of the active electrical power 

absorbed by the actuator) can be also described in terms of magnitude 

of impedance evolution, as Figure 3.14 indicates (a numerical low-pass 

filtered evolution). The correspondence between the Figures 3.5 (b), 3.6 

and 3.14 is provided by the three events: in A1 the supplying circuit of 

the voice coil actuator is switched-on; in B1 this circuit is switched off; 

in C1 is generated the free viscous damped response of the cantilever 

beam. It is easy to correlate Figures 3.5 (b) and 3.6, but the evolution of 

magnitude of impedance given in Figure 3.14 seems to be very difficult 
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to explain. An overview of this figure shows that a negative active 

electrical power flow to the actuator is accompanied by the increasing 

of the magnitude of impedance of the actuator. 

 

Fig. 3.14: Time evolution of the magnitude of electrical impedance Z 

during the experiment from Figures 3.5 (b) and 6. See also the 

chapter 3.7. 
 

 The magnitude increases quickly (less than 2 seconds) after the 

moment A1, from 16 KΩ to a constant value Zc=65.35 KΩ that keeps 

until B1. Before A1, the vibration amplitude and the active electrical 

power are zero, it is impossible to correctly describe the evolution of 

the magnitude of impedance (on Figure 3.14 this evolution is generated 

by the electrical noise, the signals ua and uB should be zero). 

Nevertheless the actuator has a very interesting behavior mirrored in 
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the evolution of the magnitude of impedance on Figure 3.14, in the area 

B1. The level of the magnitude rapidly increases (with 850 Ω) when the 

supplying circuit of the voice coil (used to excite the cantilever beam) 

is switched-off. In B1 the forced response of the cantilever beam (due 

the harmonic excitation on 17.58 Hz) disappears and is replaced by a 

free viscous damped response on 17.60 Hz frequency.  

 

Fig. 3.15: Time evolution of the magnitude of electrical impedance Z 

during the experiments described in Figure 3.12 (see also the 

chapter 3.7). 
 

The experiment from Figure 3.12 (active electrical power 

evolutions with self excited vibration due to a positive feedback with 

instability, for different values of shift of phase α) is described in terms 

of evolution of the magnitude of impedance in Figure 3.15 (see the 
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curves 1, 2 and 3 on both figures). Here the magnitude also increases 

quickly to a constant value Zc which depends on the value of α. It is 

experimentally revealed that the shift of phase φ between the 

instantaneous current i(t) and voltage ua(t) also decreases rapidly to a 

constant value (φ=13.2o for curve 1, φ=24.5o for curve 2 and φ=28.9o 

for curve 3). 

 

Fig. 3.16: The evolution of magnitude of electrical impedance Zc 

related to the shift of phase α. 
 

 This means that according to Eqs. (3.7) and (3.11), during the 

experiment described in Figures 3.12 and 3.15 the ratio Ua,rms/Irms is 

constant but the mathematical product Ua,rms·Irms is variable for a while 

(until Pel,act=Pss, in steady-state). 
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The same behavior of the magnitude of electrical impedance (it 

tends to a constant value Zc) can be observed for all the experiments 

initiated with a pulse excitation for different values of α.  

 

Fig. 3.17: Time evolution of the magnitude of electrical impedance Z 

during the experiment described in Figure 3.13 (see also the chapter 

3.7). 
 

The dependence Zc(α) is graphically described in Figure 3.16. 

The maximum value of the magnitude (Zc=505 KΩ) is generated for a 

shift of phase α=-15.5o. It is expected that the maximum value of the 

magnitude should be placed at α=0o. We haven’t found an explanation 

for this difference of maximum value location yet.  

The experiment described in Figures 3.13 (a) and 3.13 (b) can 

also be described by the evolution of magnitude of electrical impedance 
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of the actuator, as Figure 3.17 indicates. There is a big difference 

between the maximum percentage variation of the impedance 

100·(Zmax-Zmin)/Zmax=2.57% and the electrical active power variation 

100·(Pss,max-Pss,min)/Pss,max=88.11%. This result also confirms that is 

better to use the evolution of active electrical power than the evolution 

of the magnitude of impedance, in order to characterize and to 

understand the dynamic phenomena driven by the actuator in a closed-

loop system with derivative feedback.  

 

3.4.4 A study on the dependence between the synthetic modal 

damping and the derivative gain. 

 

The first bending mode of vibration of the cantilever beam is 

characterized by the modal damping ratio ζ. The damping ratio has two 

components: the natural (structural) damping ratio ζn and the synthetic 

damping ratio ζsd, with ζ = ζn + ζsd. The natural damping ratio ζn has a 

constant positive value; it is passively generated by air friction and 

internal friction inside the material of the cantilever beam. The 

synthetic damping ratio ζsd has a positive or negative value; it is 

actively generated by the derivative feedback inside the closed-loop 

system. It is presumed that the synthetic damping ratio is directly 

proportional to the derivative gain Cd(α), so: ζsd=Csd·Cd, with Csd a 

positive, constant value. The damping ratio can be written as it follows: 

 

)(CC)( dsdnsdn                                (3.12)
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This relationship can be confirmed as it follows. For several 

different values of the angle α (chosen in order to keep the stability of 

the cantilever beam), the cantilever beam is excited with an impulse 

excitation as already shown.  

 

Fig. 3.18: Experimental and fitted evolution of the damping ratio ζ 

depending on the shift phase angle α (see also the chapter 3.7). 
 

In consequence, for each value of α they are experimentally 

determined by free response data fitting the values of: damping ratio ζ, 

damped modal natural angular frequency ω1, undamped modal natural 

angular frequency ω0, voltage gain Cv, derivative gain Cd=Cv·sin(α)/ω1 

and the power peak Ppv. A graphic representation ζ(α) with 

experimental data points of α and ζ coordinates (represented by 
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blackened squares on Figure 3.18, starting with Dp1 data point) is 

numerical fitted using the Eq. (3.12) in order to find out the values of ζn 

and Csd. The result (see the best curve fit given in Figure 3.18) is 

significant: there is a good fit between the curve and the data points. 

This indicates a good measurement precision. The following values 

were found by fitting: ζn = 0.0038 rad-1 (or ζn=0.38%) and Csd=0.4388. 

The Eq. (3.12) is confirmed with a good approximation.  

As it was presumed, the synthetic damping is practically 

directly proportional to the derivative gain, and Csd>0. There is another 

confirmation: the value of ζn is very close to that already found in 

Figure 3.5 (a) (0.41%). An experimental hypothesis can be formulated 

due to the appearance of the curve fit: if  ζn>ζsd whatever the value of α 

is (the dynamic system of the cantilever beam is stable)  ζ(α) has an 

almost harmonic evolution. Figure 3.14 partially confirmed this 

hypothesis. Large values of positive synthetic damping are often 

required for technical applications.  

Two ways are available to obtain this: the first is to use 

piezoelectric transducers with large K31 values; the second is to 

increase the derivative gain Cd (according to Eq. (3.12)). In order to 

follow the second way an increase of the value of the voltage gain Cv 

(according to Eq. (3.2)) is necessary. In the setup described in Figure 

3.1, a high voltage amplifier should be placed between the phase shifter 

8 (α = 90o) and the actuator PA 10. We shall consider that the voltage 

gain Cv in feedback closed-loop is produced by this amplifier. The 

positive synthetic damping can be maximized if this gain (therefore the 
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applied voltage to the actuator) is increased up to the limit imposed by 

the phenomenon of dielectric breakdown in the actuator. 

 

3.4.5 A study on the dependence between the synthetic 

damping and the active electrical power absorbed by the 

actuator. 

 

As confirmed before, the synthetic damping is directly 

proportional with the derivative gain in the feedback closed-loop. Some 

previous experimental results prove that there is a relationship between 

the active electrical power absorbed by the actuator and the synthetic 

damping generated (e. g. Figures 3.7 and 3.10). It is expected that a 

negative absorbed active power should generate a positive synthetic 

damping and a positive power should generate a negative synthetic 

damping. There is an experimental approach which confirms this 

presumption and describes the character of dependence between the 

active power and the synthetic damping in graphical terms. Some 

experimental results already found before (in order to plot the Figure 

3.18) are used. Figure 3.19 (b) shows the evolution of power peak Ppv 

depending on the evolution of the angle α (experimental points of 

coordinates α and Ppv joined by line segments, lightly smoothed data). 

A comparison between Figures 3.18 and 3.19 (b) shows that there is a 

logical correlation between the damping and the active electrical power. 

It is easier to see this correlation by following this reasoning: Ppv 

depends on α, (according to Figure 3.19 (b)), ζsd depends on α (a result 
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found by curve fitting in Figure 3.18, according to Eq. (3.12)) and so ζsd 

depends on Ppv. This last dependency is revealed on Figure 3.19 (a) 

(experimental points of coordinates Ppv and ζsd joined by line segments 

on curve 1, lightly smoothed data).  

 

Fig. 3.19: (a) Experimental and fitted evolution of the synthetic 

mechanical damping ratio ζsd depending on power peak value Ppv; 

(b) Experimental dependence of Ppv on the shift phase angle α (see 

also the chapter 3.7). 
 

The dependence ζsd(Ppv) is close to a linear regression. The 

result of ζsd(Ppv) data fitting (slope-intercept form, curve 2) is described 

by: 

4
pvpvsd 1025.6P75.121bPa               (3.13)
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The negative slope (a = -121.75) proves that -as expected- a 

positive active electrical power produces a negative synthetic damping; 

a negative power generates a positive synthetic damping. This way it 

was once again shown that the actuator and the closed-loop feedback 

with derivative gain work as an active damper which is able to generate 

positive or negative damping adjusted by means of the phase angle α 

and of course by means of the voltage gain Cv. 

An observation is in order: in the area marked with A the active 

electrical power and the synthetic damping are negative (and also the 

intercept in Eq. (3.13) is negative) because the evolution Ppv(α) doesn’t 

pass through zero when α=0 (Figure 3.19 (b)). This evolution is shifted 

15.5o to the left. The evolution of the impedance Zc(α) given in Figure 

3.16 is also shifted in the same manner.  We didn't find an explanation 

of these phenomena for now and we take it as a challenge to understand 

and to write about it in a future paper. An experimental hypothesis can 

be formulated: if ζn>ζsd whatever the value of α is (the dynamic system 

of the cantilever beam is stable) the Ppv(α) has an almost harmonic 

evolution (see Figure 3.19 (b)) and ζsd(Ppv) describes a closed curve 

(almost an ellipse, see Figure 3.19 (a)). 

 

3.4.6 A study on the dependence between the synthetic modal 

stiffness and the proportional gain. 

 

A collateral result of the experimental research is useful for a 

complete understanding of the behavior of a closed-loop dynamic 

control system with proportional and derivative feedback. 
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The proportional gain Cp in the feedback closed-loop should 

generate a mechanical synthetic modal stiffness kss (positive and 

negative). A positive value for Cp (with -π/2<α<π/2) generates a 

negative proportional feedback therefore a positive synthetic modal 

stiffness kss because the sensor and the actuator have different poling 

directions. If Cp<0, due to the positive proportional feedback, kss<0. 

This means that the undamped natural frequency of the first mode f0 

=ω0/2π depends on Cp, therefore f0 depends on α. It is presumed that 

kss=Ck·Cp (kss is directly proportional with Cp, Ck is a constant value). 

The frequency f0 can be written approximately as follows: 
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Here km is the open-loop modal stiffness, mm is the open-loop 

modal mass, mmm m/k is the open-loop undamped natural 

modal angular frequency of the first bending mode (ωm=ω0 if Cp=0), 

pssmssss CCm/k  is undamped synthetic angular 

frequency, and Css=Ck/mm is a synthetic stiffness constant. 

Figure 3.20 presents the experimental evolution of the 

frequency f0 depending on the values of α (unsmoothed data points of α 

and f0 coordinates, represented by blackened squares). On the same 

figure the best curve fit is drawn as result of fitting of data points using 

the Eq. (3.14). There is a good fit between the curve and the 
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experimental data points, which means that all assumptions we have 

made so far are valid. This is also a description of the measurement 

precision. The fitting provides the values of ωm and Css (ωm = 110.20 

rad/s and Css = 89.07 rad2/s2). The synthetic modal stiffness kss is zero 

in the point of coordinates α = 90o and fm = ωm/2π =17.54 Hz. 

 

Fig. 3.20: Experimental and fitted dependence of the undamped 

natural modal frequency f0 on the shift phase angle α (see also the 

chapter 3.7). 
 

It was shown in this manner that the actuator and the closed-

loop feedback system with proportional gain work as an active 

synthetic modal stiffness generator which is able to generate positive or 

negative stiffness, adjusted by means of the shift of phase angle α and 

the voltage gain Cv. It is worth noting that, according to Figure 3.20, the 



 

 

 

 

 

 

                                                                                      

158 

 

influence of the proportional gain on the undamped natural frequency 

of the first mode f0 is extremely small. 

A first hypothesis can be formulated: if ζn>ζsd no matter the 

value of α is (the dynamic system of the cantilever beam is stable) f0(α) 

has an almost harmonic evolution. This is partially verified in Figure 

3.20. 

A second hypothesis can be formulated as well: in order to 

generate synthetic stiffness, the actuator should absorb negative modal 

reactive electrical power.   

 

3.5 CONCLUSIONS 

 

Many advantages can be drawn from the monitoring of the 

active electrical power absorbed by a piezoelectric actuator placed in a 

closed-loop feedback system for dynamic correction (damping) of a 

mechanical structure. First of all because it uses a very simple 

computer assisted technique. The active power evolution describes 

(better than the magnitude of the electrical impedance) the behavior of 

the actuator related to the derivative gain in feedback loop and related 

to the dynamics of the mechanical structure (in stable and unstable 

regimes). 

Especially the concept of negative active power flow involved 

in producing of synthetic positive modal damping (active damping) has 

been treated theoretically and experimentally. A new theoretical 

approach of active damping is taking shape: an actuator (transducer) 

placed on a mechanical structure generates modal damping if it is 
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electrically powered by a negative active electrical modal power 

supply. This approach is available for any type of transducer (e.g. a 

piezoelectric stack transducer [42, 16], a voice-coil transducer [16, 39], 

a magnetostrictive transducer [41], a DC motor, etc). There is a 

possibility that this might be practically exploited later.  

The relationship between the reactive electrical power flow to the 

actuator and the synthetic modal stiffness (generated by proportional 

feedback in this paper) is a possible topic for future research. 
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3.7 A SUMMARY OF SOME EXPERIMENTAL 

FIGURES 

 

Some experimental figures from this paper can be reproduced by any 

reader as it is indicated here below. First please download the folder 

Data paper 3 (see the download indications from preface). 

 

Figure 3.3 

 

You need the folder Data Fig. 3.3. In order to obtain the color version 

of Figure 3.3 you should run the Matlab program fig33.m. Based on the 

experience gained in the previous two papers the reader is invited to 

analyze each of three voltages generated during this free response of 

the cantilever beam in order to find the frequency of vibration and the 

damping ratio. Normally the values of these two parameters should be 

the same for all voltages. 

 

Figure 3.4 

 

You need the folder Data Fig. 3.4. In order to obtain the main parts of 

Figure 3.4 you should run the Matlab program fig34.m. Please have a 

look also on task #3 in the chapter 3.8. 
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Figure 3.5 

 

You need the folder Data Fig. 3.5. In order to obtain the main parts of 

Figure 3.5 you should run the Matlab program fig35.m.  

 

Figure 3.7 

 

You need the folder Data Fig. 3.7. In order to obtain the main parts of 

Figure 3.7 you should run the Matlab program fig37.m.  

 

Figure 3.8 

 

You need the folder Data Fig. 3.8. In order to obtain the main parts of 

Figure 3.8 you should run the Matlab program fig38.m. The reader is 

invited to perform the same study as it was indicated previously at 

Figure 3.3. 

 

Figure 3.9 

 

You need the folder Data Fig. 3.9.  In order to obtain the main parts of 

Figure 3.9 you should run the Matlab program fig39.m. The program 

needs almost 40 s in order to generate this Figure. The reader is invited 

to do a comparation between Figure 3.9 (with positive active power) 

and Figure 3.4 (with negative active power). 
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Figure 3.10 

 

You need the folder Data Fig. 3.10.  In order to obtain the main parts 

of Figure 3.10 you should run the Matlab program fig310.m.  

 

Figure 3.11 

 

You need the folder Data Fig. 3.11.  In order to obtain a coloured 

version of Figure 3.11 you should run the Matlab program fig311.m. 

Please have a look also on the task #6 in the chapter 3.8. 

 

Figure 3.12 

 

You need the folder Data Fig. 3.12. In order to obtain a coloured 

version of Figure 3.12 you should run the Matlab program fig312.m. 

Please have a look also on the task #6 in the chapter 3.8.  

 

Figure 3.13 

 

You need the folder Data Fig. 3.13. In order to obtain Figure 3.13 you 

should run the Matlab program fig313.m. The program needs almost 44 

s in order to generate this Figure. 
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Figure 3.14 

 

You need the folder Data Fig. 3.14. In order to obtain the main part of 

Figure 3.14 you should run the Matlab program fig314.m. 

 

Figure 3.15 

 

You need the folder Data Fig. 3.15. In order to obtain the main part of 

Figure 3.15 you should run the Matlab program fig315.m. In order to 

generate this Figure the PC needs almost 152 s. 

 

Figure 3.17 

 

You need the folder Data Fig. 3.17. In order to obtain the main part of 

Figure 3.17 you should run the Matlab program fig317.m. 

 

Figure 3.18 

 

You need the folder Data Fig. 3.18. In order to obtain the main part of 

Figure 3.18 you should run the Matlab program fig318.m. 

 

Figure 3.19 

 

You need the folder Data Fig. 3.19. In order to obtain the main part of 

Figure 3.19 you should run the Matlab program fig319.m. 
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Figure 3.20 

 

You need the folder Data Fig. 3.20. In order to obtain the main part of 

Figure 3.20 you should run the Matlab program fig320.m. 

 

 

3.8 THEORETICAL AND EXPERIMENTAL WORK 

TASKS 

 

1. Perform the experimental setup described in Figures 3.1 and 

3.2.  

 

2. Try to design a Matlab program that ensures the determination 

of phase shift (α) generated by the phase shifter based on the 

experimental evolutions of the voltage us and uB (Figure 1) 

during the free response of the cantilever beam. You can use the 

indications given at task #3 in paper 1. 

 

3. Perform the experiment described in Figure 3.4 in order to find 

out the evolution of the active electrical power (Figure 3.4 c.) 

for different values of phase shift α. You find the folder  

paper3task3 in the folder Data paper 3. There you find the 

Matlab program figure34 and the data file proba.txt used to 

generate Figure 3.4. Try to adapt yourself this program for these 
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requirements. Optionally you can use for this purpose the 

Matlab program putact. 

For each value of α you should excite the cantilever beam 

(using the switch K, see Figure 3.1) in order to generate a free 

response (mirrored in the voltages uA, uB or us). This free 

response should be used to find out the exact values of the 

frequency f of free response and the damping ratio ζ (see the 

task # 3 in paper 1). This value of frequency should be written 

in line 8 of the program, in first instruction: 

(filtr=(l1/timp(l1))/17.5451; replacing the current 

value marked with bold. 

4. Produce a mathematical argument in order to explain that the 

Equations (10) are correctly. 

 

5. Perform the experimental study which proves the reliability of 

the second part of Eq. (3.10),   21 for different values of 

shift of phase α. Here ζ is the damping ratio of the free response 

(mirrored in the evolution of the voltages uA, uB and us, see the 

previous task), ζ1 is the damping ratio of the free response 

mirrored in the evolution of active electrical power Pel,act  , see 

the first part of Eq. (3.10) 
jt01

0jact,el eP)t(P





 . In 

order to find out ζ1 is necessary to interpolate the evolution of 

the active electrical power (see the task 3 here above). It is 

possible to do this job by running the program idenput (stored 

also in the folder paper3task3). This program is able to find out 
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by numerical interpolation the values of P0 and ζ1·ω for the 

evolution of the active electrical power from Figure 3.4.c. The 

graphical result of this interpolation is given here below in 

Figure 3.21. The numerical result is displayed as d(1) = P0 =  -

3.1862e-005 W and d(2) = ζ1·ω= 1.8141, so ζ1=d(2)/ω0. Here 

ω0 ≈2·π·f and f is the frequency of the free response mirrored in 

the evolution of the voltages uA, uB or us (see task #3). 

 

6. Try to generate a value of shift of phase α in order to produce 

negative sintetic damping with instability. Perform the 

experiment which produces the result given in Figure 3.11. It 

may be useful to run the Matlab program fig311 from the folder 

paper3task6 (ask the teacher for this folder). Here it is an 

interesting problem. After a long period of time, the values of 

the active electrical power absorbed by the actuator PA become 

constant on both curves. The reader is invited to search if these 

values are the same. And if these values are not the same, the 

reader is invited to produce some arguments on this item. 

 

7. Please have a look on Figure 3.12. Imediately after the feedback 

loop between the sensor and actuator is closed the system starts 

to vibrate and to absorb more and more active electrical power. 

The reader is invited to investigate how the system starts to 

vibrate on first flexural bending mode of the free end of the 

cantilever beam. Remember that there is no external excitation! 
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8. Using the results from task #3 (frequency f and damping ratio ζ 

for each value of shift of phase α) try to obtain the graphical 

results shown in Figure 3.18 and Figure 3.20. 

 

 

 

 

 

 

 

 

 


