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Abstract. The paper discusses the influence of various concentrators upon 

the stresses and deformability of straight bars subjected to tensile strain. For four 
different types of concentrators, both analytical calculations and finite elements 
analyses were performed, for determining the deformation capacity of the bars 
containing them. The area of materials release was the same for all four 
concentrators, respectively 100 mm2. Under such conditions, the differences 
result only from the shape of the concentrators employed. For a bar with a 
circular concentrator, experimental determinations, finite elements analyses and 
analytical calculations were performed under the same stress conditions, similar 
results being obtained. 

Key words: analytical calculations, deformability, finite elements, stress 
concentrators. 

 
1. Introduction 

 
Study on the physical aspects of axial tension evidences that normal 

stresses σx, are uniformly distributed on the cross section of the bar. This 
situation is valid only for bars with constant section along the axis but, even in 
such a case, the uniform distributions of stresses is explained exclusively by 
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cross sections occurring at sufficient distance from the application point of the 
external load, which also includes the supports (Lurie, 1999). The stress values 
in the area of load application, deduced either experimentally or by the methods 
of the elasticity theory are much higher than the so-called uniformly distributed 
nominal stress.  

If the section has sudden variations, voids, notches, joining, all these 
influence unfavorably the local distribution of stresses which, in some points, 
may attain much higher values than those resulting from an uniform distribution 
on the section. The value of the coefficient of stress concentration, Kt, depends 
on the configuration and size of stress concentrations, as well as on the material 
from which the piece is made. The values of coefficient Kt are provided in 
engineering handbooks (Rozhanskaya & Levinova, 1996). According to the 
theory of elasticity, b > 10 d, σmax = Kt·σn = 3σn , which means a concentration 
coefficient in front of the void Kt = 3 (Fig. 1a). The limit of the elastic domain, 
Nlim, is attained when the flow limit σc is reached in the most stressed fiber, (Fig. 
1b). From this value on, the longitudinal fibers tangent to the void will be 
longer, without an additional load under a constant value σc, which means that 
they get plasticized. 
 

 
 

Fig. 1 − Bar with stress concentrators. 
 

In an intermediary situation (Fig. 1c), two zones may be distinguished, 
namely: a central, plasticized zone, over which σc is uniformly distributed, and 
the peripherical, elastic zones with a non-uniform distribution of stresses. If the 
force continues to increase, at the limit value all fibers reach the flow limit, 
(Fig. 1b), uniformly distributed on the section of the bar. The axial effort 
corresponding to this case is: Nlim= σc·Anet. Consequently, the flowing level from 
the Prandtl curve caused a plastic redistribution on the net section of the bar, so 
that, at the limit state of stress, strain is uniformly distributed. 
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2. Analytical Calculation of Displacements  
in Bars Subjected to Tensile Stress 

 
In the case of straight bars, leaned in different points and axially 

subjected to forces or moments, the final positions of the cross sections may be 
determined by considering a section from one of the respective supports as a 
guide mark. As known, for the respective support, displacement in such point is 
null. The same holds true for the programs of finite elements analysis, where the 
conditions of displacement over the contour represent limit conditions, on the 
basis of which the equation system may be checked. Usually, for leaned bars 
axially-stressed with either forces or moments, one of the ends is considered as 
fixed, a conventional diagram of the displacement being plotted for establishing 
the relative displacements among the various sections of the bar. In this way 
there may be calculated, without errors, the strain and stresses occurring in 
different points of the bar, as a result of the external stresses.  

Calculation of the displacements of the cross sections of straight bars 
should consider certain hypotheses, such as (Sheppard & Tongue, 2005): 

− the material from which these bars are made is viewed as 
homogeneous, with isotropic behavior under stress; 

− the externally applied stress causes deformations only in the elastic 
domain; 

− the hypothesis of Bernoulli, according to which a section plane, 
perpendicular to the axis of the bar prior to stress application will remain plane 
and perpendicular to the axis of the bar after stress application, as well, is 
considered as valid. 

Let us consider a straight bar, with a constant section, with a fixed end, 
loaded at the other end with a force or moment guided according to the 
geometric axis of the bar, Fig. 2. 

 

 
Fig. 2 − Straight bar subjected to axial stress. 

 
Under the action of the external load N, the bar gets deformed and, 

consequently, the various cross sections are shifted, comparatively with the 
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initial position; in this way, if the axial load is a force, the cross sections of the 
bar will be shifted, and the bar will be elongated, on the whole, with amount δtot 
- Fig. 2a.  

The bar illustrated in Fig. 2a is formed of only one region, according to 
the same variation law of sectional efforts N(x) - Fig. 2c. Under such 
circumstances, it is known that the total displacement of the bar subjected to 
tensile stress will be given by relation (Timoshenko, 1976):
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where N(x) = F represents the effort in some section x € [0, l] while R(x) 
represents rigidity being given by relation: R(x) = E·A(x), where: E represents 
the Young modulus; A(x) − the area of bar’s cross section, noted with x. 
 Displacement of some cross section, occurring at distance x from the 
fixed end of the bar (Fig. 2c) will be given by relation: 
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or it will be calculated reported to the free end: 
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with x, x1 and x2 considered the same as in Fig. 2a. 
 Under such conditions, the diagram of the displacements of cross 
sections for the straight bar plotted in Fig. 2a, subjected to tensile stress, takes 
the aspect of the one illustrated in Fig. 2b. Different regions of the bar occur 
when, along it, changes are produced either in the variation law of bar’s section, 
in the law of effort variation, or in both of them (Deutsch, 1979). Consequently, 
displacement of some section of the bar will be given by relation: 
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where xi and x1i are measured starting with section i, δi representing 
displacement of the same section. 
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3. Analytical Calculation of the Displacements 
 of Bars with Concentrators 

 
An analytical calculation of displacements was performed for 4 straight 

bars on which stress had been applied, each of them making use of a stress 
concentrator. The stress concentrators applied on such bars are of circular, 
quadratic, triangular and canal-type Fig. 3.  

 

 
 

Fig. 3 − Stress concentrators. 

 
 The sizes of the bar are 100x40x3 mm3 (L·b·t), while the cut up area of 

each concentrator is A = 100 mm2. Consequently, the sizes resulting for each 
concentrator in part are obtained with relations: 
 

− circular:
 

5.64 mm
A

π
=   

− quadratic: 2.57 mm
12

A

π
=

+
; a = 4 r;  

− triangular: 2.718 mm
6 3

A

π
=

+
; a = 6 r; 

− canal-type: 3.74 mm
4 12

A

π
=

+
; a = 4 r. 

  
In the following, a calculation example is provided for the bar with 

triangular concentrator - Fig. 4. The bar is of plate-type, with thickness t = 3 
mm. The geometrical dimensions of such a configuration are: l12 = 42.938 mm; 
l23 = 4.077 mm; l34 = 8.688 mm; l45 = 1.359 mm; l56 = 42.938 mm; Aconc.= 100 
mm2; 

r = 2.718 mm; a = 16.309 mm. Young modulus takes a value E = 2·105 
N/mm. 

The bar plotted in Fig. 4, fixed in its left end, had been loaded with a 
7000 N force in its free right end. 
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Fig. 4 − Bar with triangular concentrator. 
 
Regions 1-2 and 5-6 have a constant cross section, so that their 

elongation values are given by relations (5), in which substitution with the 
above data will also provide the elongation values, in mm: 
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Elongations of regions 2-3, 3-4 and 4-5, the cross sections of which vary 

with x1, x2 and x3 (Fig. 4), are given by the general relations (GoanŃă, 2001): 
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Explained of areas A(x1), A(x2) and A(x3) and substitution of the above 

data lead to: 
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Total elongation of the bar will be given by relation: 
 

6 12 23 34 45 56 0.030344mmtotl l l l l lδ∆ = = ∆ +∆ +∆ +∆ +∆ =   

 
while displacements of points 2, 3, 4 and 5 will be:  
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l l l

l l l

l l l l

δ δ

δ

δ
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= ∆ +∆ + ∆ + ∆ =

 

 

 
Calculations for the other concentrators were made in a similar manner, 

the values, in mm, for the displacements of the corresponding cross sections 
being listed in Table 1.  

 
Table 1 

 Analytical Calculation Data 

Displacements 

Aconc = 100 mm2 E = 200000 N/mm2 

F = 7000 N Atot = 120 mm2 

Ltot = 100 mm      Bar without conc. δtot=0.0292 mm 

 Circular Quadratic Triangular Canal-type 

t 3 3 3 3 
b 40 40 40 40 
r 5.642 2.570 2.718 3.742 
a 11.284 10.280 16.309 14.968 
l12 44.358 44.860 42.938 42.516 
l23 11.284 2.570 4.077 3.742 
l34 44.358 5.140 8.688 7.484 
l45  2.570 1.359 3.742 
l56  44.860 42.938 42.516 
Lt 100 100 100 100 

∆l12 0.012938 0.013084 0.012524 0.012401 
∆l23 0.004253 0.000968 0.001668 0.001283 
∆l34 0.012938 0.002018 0.003197 0.002685 
∆l45  0.000968 0.000432 0.001283 
∆l56  0.013084 0.012524 0.012401 
δ1 0 0 0 0 
δ2 0.012938 0.013084 0.012524 0.012401 
δ3 0.017190 0.014053 0.014192 0.013684 
δ4 0.030128 0.016070 0.017389 0.016369 
δ5  0.017039 0.017820 0.017652 
δ6  0.030123 0.030344 0.030053 
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Starting from the above data, Fig. 5 plots the graphs of the cross 
sections displacements. For an as good visualization as possible, Fig. 6a shows 
exclusively the region from the immediate vicinity of the stress concentrator, 
between 45 and 55 mm, respectively between 90 and 100 mm - Fig. 6b, the 
concentrators being always placed in central position on the bar with a total 
length of 100 mm. 

 

 
 

Fig. 5 − Displacements of the cross sections in the vicinity of 
the concentrator – analytical, l = 0-100 mm. 

 

 
     a                                 b  

 
Fig. 6 − Displacements of the cross sections in the vicinity of the concentrator – 

analytical calculation: l = 45-55 mm (a); l = 90-100 mm (b). 
 

Analysis of the curves illustrated in Fig. 6 permits the following 
observations: 

− the total displacement of the bar without a stress concentrator is 
0.029166, which represents the lowest value recorded; 

− in increasing order of displacement of the free end of the bar, there 
occur the bars with concentrator: of canal- (0.030053 mm), quadratic (0.030123 
mm), circular(0.030128 mm) and triangular (0.030344 mm) type; 

− at some distance from the stress concentrator one may observe the 
linearity of displacements, the straight bars being overlapped in the area of 
enclosure; 
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− in the area of stress concentrator, deviations from linearity may be 
observed in all four cases; 

− in the area of stress concentrator, the curves get intersected in two or 
more points; 

− for the triangular concentrator, the largest total bar displacement is 
obtained. 
 

4. Finite Elements Analysis 
 
Finite elements analysis of the bars subjected to tensile stress was 

performed with the above described concentrators. The bar had been fixed in its 
left end and stressed at the other end with a 7000 N force. The sizes are the 
same as for the analytical calculation, respectively (100·40·3) mm3 (L·b·t). 
Under such conditions, the stress for the bar without concentrator, or for the 
bars with concentrator, but at some distance from it, recorded a value: 

 
7000

58.33 MPa
120

F

A
σ = = =  

 

 
As already mentioned, the cutting up required by the introduction of the 

4 concentrators gave a 100 mm2 area, for each of them. The configuration of 
concentrators is plotted in Fig. 3, while the resulting geometrical sizes are 
discussed in chapter 3. Fig. 7 presents the maps of stresses σyy determined 
according to stress direction, for the 4 cases considered. The observation is 
made that maximum stresses occur in the weak zones of the sections. 
Comparatively with a stress of 58.33 MPa, maximum stresses for the cases with 
concentrators are:  

− circular concentrator: σyymax= 182 MPa; 
− quadratic concentrator: σyymax= 169 MPa; 
− triangular concentrator: σyymax= 255 MPa; 
− canal-type concentrator: σyymax= 129 MPa. 
Analysis of the stresses maps given in Fig. 7 permits the following 

conclusions: 
− for the circular concentrator, maximum stress is about 3 times higher 

than the value recorded in the cases without concentrator (182 MPa versus 
58.33 MPa), as actually shown by theoretical calculations, as well; 

− the highest stress, registered for the triangular concentrator, is 
localized in the immediate vicinity of the connecting rays; 

− in all cases, compression stresses are registered on the center of the 
bar, in the vicinity of the concentrator. 
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Fig. 7 − Map of stresses, according to stress direction. 

 
For the above-discussed bars with concentrators, the variation graphs of 

the displacements of the points from the bars’ axis, as well as of the points 
occurring on the lateral part of the bars, have been drawn - Fig. 8. For the sake 
of comparison, on the same graphs there had been also plotted the curves 
representing the displacements of the cross sections determined analytically, as 
well as the straight line representing displacements of the cross sections for the 
bar without concentrator. Fig. 8 shows that: 

− the linearity of displacements at the ends of the bar is maintained, 
remaining therefore unaffected by the presence of the concentrator; 

− comparatively with the bar without concentrator, the total 
displacement of which had been of 0.029 mm, the other total displacements 
were, in increasing order: of canal-type 0.0307, quadratic 0.0313, circular 
0.0314 mm and triangular 0.0317; 

− comparatively with the analytical calculation, the order is maintained, 
even if the recorded values are slightly different, the ones determined by finite 
elements analysis being higher; 

− stress concentrators cause deviation from linearity of the curves of 
displacements; 

− for the points occurring on the central axis, the shape of the curves of 
displacements from the fixed end is convex, while that from the load is 
concave; 

− for the points occurring on the lateral part of the bar, the shape of the 
curve of displacements from the fixed end is concave, while that from the load 
is convex; 

− comparatively with the bar without concentrator, the points from the 
axis of the bar occurring towards the fixed end are less shifted – the red and 
blue points from the left part of the concentrator; 
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− comparatively with the bar without concentrator, the points from the 
axis of the bar occurring towards the force are more shifted - the red and blue 
points from the right part of the concentrator; 

− comparatively with the bar without concentrator, all points from the 
lateral part of the bar are more shifted; 

− for all four cases with concentrators, the first part of the curve – up to 
the concentrator – representing the analytical calculation, occurs between  the 
curved representing the displacements of the central and lateral points; 

− the same holds true for the curve representing the displacements of 
the cross sections of bars without concentrator; 

− for all four cases with concentrators, the analytically-calculated 
displacements are lower than those calculated by finite elements analysis, 
versus both the central and the lateral points. 

 

 
a                      b  

 
c                                 d  

 
Fig. 8 − Displacements of the central and lateral points – FEA + analytical: a − circular 

concentrator; b − quadratic concentrator; c − triangular concentrator; 
 d − canal-type concentrator. 

 
Fig. 9 plots the curves of displacements for the points occurring on the 

axis of the central bar for all previously-mentioned four cases of concentrators. 
For the points from the fixed end, some similarity may be observed among the 
curves plotted for the circular, quadratic and canal-type concentrators. 
Nevertheless, for the points from the load, similarities are noticed among the 
curves drawn for the circular, quadratic and triangular concentrators.  
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                                   a                       b  

Fig. 9 − Displacement of the central points:  l = 0-100mm (a); l = 30-70 mm (b). 
 

The observation is also made that, comparatively with the case without 
concentrator, the lowest total displacement appears in the canal-type 
concentrator, which also records the lowest stress in the connection zone. On 
the other hand, for the points occurring on the left side of the concentrator, the 
lowest displacement occurs at the bar with triangular concentrator, even if this 
bar also records the highest total displacement. 

 
5. Tensile Tests on Samples with Concentrator 

 
The experimental determinations made on the test machine considered a 

bar with circular concentrator. Also, finite elements analysis was developed for 
the same bar, under the same stress conditions. 

Tensile tests were made on a bar with an 80 mm2 cross section area - 
Fig. 10, with the universal INSTRON 8801 device, as follows (Mocanu, 1982): 

− stresses up to breaking for a flat sample without concentrator; 
− stress up to 4000 N (elastic domain) on the sample with concentrator 

and extensometer; 
− stress up to breaking for a flat sample with concentrator. 

 

   
 

Fig. 10 − Tensile tests on the universal INSTRON 8801 device. 
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The graph from Fig. 11a illustrates the variation of displacements 
determined with an extensometer, along a 50 mm distance on both sides of a 
circular concentrator. The total displacement recorded for a 4000 N force was of 
0.0185 mm.  

 

 
                               a                                                  b 

 
Fig. 11 − The force-displacement curve, plotted in the elastic domain with an 

extensometer (F = 4000 N) (a); Displacements along the length of the 
 bar: - finite elements analysis and analytical calculation (b). 

 
The red and blue graphs from Fig. 11b show, on the basis of finite 

elements analysis, the variation of displacements in a bar with a hole, fixed at 
one end and strained to the other with a 4000 N force. The diamond bookmarks 
represent the displacements of the points from the bar’s axis, while the square 
bookmarks stand for the displacements of the points from the lateral part of the 
bar. A slight difference occurs between the displacement measured with an 
extensometer (0.0185 mm) and the one determined by finite elements analysis 
(0.0196 mm), over the 50 mm interval, on one side and the other of the hole. 
The difference may be also caused by the fact that finite elements analysis does 
not involve the experimentally-determined modulus of longitudinal elasticity 
and the Poisson coefficient. The values of these elastic characteristics, 
employed in finite elements analysis were: E = 2.1·105 N/mm2, ν = 0.29. 

The green curve is plotted on the basis of analytical calculations. If, 
initially, this curve is in line with the one taken over from finite elements 
analysis, the observation is made that the hole produces its deviation from 
linearity because, in analytical calculations, the effect of stress concentration 
was left aside. 

The graphs from Fig. 12 show the characteristic curves taken over from 
the test machine for samples with and without concentrator. 
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    a                    b 

 

Fig. 12 − Characteristic curve for a bar without concentrator (a); Characteristic 
 curve for a bar with concentrator (b). 

 
The following observations may be therefore made: 
− the maximum force is higher in the bar without concentrator, namely 

22500 N versus 13000 N; 
− in the linear portion, displacements are larger for the bar with 

concentrator; 
− the yield point and ultimate strength are lower in the bar with 

concentrator; 
− breaking elongation is drastically reduced in the bar with circular 

concentrator: 6.3 mm versus 45 mm. 
 

6. Conclusions 
 
Experimental determinations of the deformations of straight bars with 

various concentrators, subjected to tensile stresses, were performed. Both 
analytical calculations and finite elements analysis were developed on bars with 
the same types of concentrators. The area of material’s releases was the same 
for all four concentrators, respectively 100 mm2. Under such circumstances, the 
differences are exclusively due to the shape of the concentrators employed. 

Analytical calculation of the displacements of the cross sections of the 
bars with different stress concentrators permits the following conclusions: 

− differences may be observed among displacements, as a function of 
the concentrator type; 

− in the vicinity zone of the concentrator, deviations from linearity 
occur in displacements, both for the points from the axis of the bar and for the 
lateral ones; 

− variations in the displacements of the points vicinity the hole, from 
the enclosure and load application take different aspects: convex and concave; 

− lowest displacement occurs in the canal-type concentrator. 
Analysis of the stress maps drawn on the basis of finite elements 

analysis shows that the highest stress is registered in the triangular concentrator, 



                                           Bul. Inst. Polit. Iaşi, t. LIX (LXIII), f. 1, 2013                                     93 
 

 

being localized in the immediate vicinity of the connecting rays. In all cases 
here considered, compression stresses are recorded in the center of the bar 
neighboring the concentrator. 

The graphs plotted on the basis of finite elements analysis evidence the 
following aspects: 

− stress concentrators cause deviation from linearity of the curves of 
displacements; 

− for the points occurring on the central axis, the shape of the curves of 
displacements from the fixed end is convex, while that from the load is 
concave; 

− comparatively with the bar without concentrator, the points from the 
axis of the bar positioned from the fixed end is less shifted, while the points 
from the axis of the bar occurring towards the force are more shifted than in the 
bar without concentrator, all points from the lateral part of the bar being shifted 
to a higher extent;  

− for all four cases with concentrators, the analytically-calculated 
displacements are lower than those calculated by finite elements analysis. 

Experimental determinations, finite elements analysis and analytical 
calculations have been performed for a bar with circular concentrator, under 
identical stress conditions. Slight differences were observed between the 
displacement measured with an extensometer and the one determined by finite 
elements analysis over a 50 mm interval, on one side and the other of the hole. 
The curve plotted on the basis of analytical calculation is similar – in its initial 
part – with the one taken over from finite elements analysis. It is observed that 
the hole produces a deviation of this curve both from linearity and 
comparatively with those taken over from finite elements analysis. 

Analysis of the characteristic curves drawn - up to breaking - for a bar 
with and without a concentrator, shows that: 

− in the linear portion, displacements are higher for the bar with 
concentrator; 

− the yield point is lower in the bar with concentrator; 
− elongation to break is drastically reduced in the bar with circular 

concentrator. 
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INFLUENłA CONCENTRATORILOR DE TENSIUNE ASUPRA 
DEFORMABILITĂłII UNEI BARE DREPTE 

 
(Rezumat) 

 
În cadrul acestei lucrări se prezintă influenŃa diferiŃilor concentratori asupra 

tensiunilor şi deformabilităŃii barelor drepte supuse la solicitarea de tracŃiune. Pentru 
patru tipuri de concentratori diferiŃi, s-au făcut atât calcule analitice cât şi analize cu 
elemente finite, în vederea determinării capacităŃii de deformare a barelor care îi conŃin. 
Aria degajărilor de material a fost aceeaşi pentru toŃi cei patru concentratori, respectiv 
100 mm2. În aceste condiŃii, diferenŃierile provin doar ca urmare a formei 
concentratorilor utilizaŃi. Pentru o bară cu concentrator circular s-au efectuat atât 
determinări experimentale, analiză cu elemente finite cât şi un calcul analitic, în aceleaşi 
condiŃii de solicitare, obŃinându-se rezultate apropiate. 
 


