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Abstract. This paper investigates the free response of first flexural 

vibration mode on a cantilever beam, mirrored in the signal delivered by a PZT 

piezoelectric plate transducer bonded near the fixed end, used as sensor. Despite 

the generally accepted theoretical model (as viscous damped free response with 

constant damping ratio and undamped angular frequency) it is experimentally 

proved that the real response is characterized by a relatively important variation 

of damping ratio and undamped angular frequency values, both depending by the 

amplitude of vibration. The investigation was done on a simple setup, by 

computer aided processing of the signal delivered by sensor.  
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1. Introduction 

 

A cantilever beam (as a simple example of vibratory mechanical 

system) is often used to introduce and illustrate different concepts in passive 

and active dynamics (Jassim et al., 2013; Guan et al., 2016). Frequently this 

free response on first flexural mode reveals the properties of the environment 

(Kramer et al., 2013) or materials (Paimushin et al., 2015).  
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If the cantilever beam is placed in horizontal position, the free vibration 

on this mode is generally described as the movement x(t) of the free end in 

vertical direction. In order to describe this movement x, [mm] related to time t, [s], 

the theoretical model of free viscous damped response of a single degree of 

freedom (spring-mass-damper) system (with constant values for damping ratio 

ξ, [] and undamped angular frequency of vibration ω0, [rad/s]) is generally used 

(Kelly, 2000), according to Eq. (1).  
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where: a, [mm] is the maximum amplitude and φ, [rad] is the phase at t = 0.  
 

 
 

Fig. 1 – a) Experimental setup; b) Free response mirrored in the signal delivered 

by a PZT piezoelectric sensor (PS) with laminar rectangle design. 

 

The research results disclosed herein proves by computer aided signal 

processing that -for relatively high values of vibration amplitude- this model 

is not accurate, the vibration parameters invoked above (ξ and ω0) are not 

constant and they heavily depend on vibration amplitude value (especially the 

damping ratio).  

These results might be important for certain applications and it is 

expected to be useful for future approaches in dynamics. 
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2. Experimental Setup 

 

The experimental setup is described in Fig. 1a. It consists of an 

aluminium cantilever beam (300x25x2 mm
3
) with a PZT piezoelectric transducer 

PS (used as sensor, with laminar rectangular design, 40x25x0.5 mm
3
, Sensor 

Tech BM 500 type, d31 polarization, with d31 = -175·10
-12

 m/V) bonded on the 

close proximity of the rigidly fixed end of the cantilever beam. 
 

 
 

Fig. 2 – a) A part of signal from Fig. 1b used for fitting; b) The residual of a single 

fitting (tB < t < tC ); c) The residual of fitting on intervals (k-1)·Δt < ti <= k·Δt. 
 

Due to the flexural vibration x(t) related with the free response 

(underdamped vibrations) on the first flexural mode of the cantilever beam, 

(which produces mechanical strain in the area where the sensor is placed 

(Horodincă, 2013) and the direct piezoelectric effect, the sensor generates a 

voltage u(t) = C·x(t), with C = 4.553 V/mm (a value supposed to be constant).  

 

3. Signal Processing Technique (I) 

 

This voltage is acquired in numerical format using a data acquisition 

system (DAS on Fig. 1a, with a 4424 PicoScope oscilloscope) and analyzed 

with a personal computer PC. Fig. 1b present the evolution of this voltage 

before and after the free response occurs (in A, manually excited). As Fig. 1b 

clearly indicates, the free response is totally mirrored in the evolution of this 
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voltage. Assuming that the Eq. (1) describes x(t) evolution between the 

moments depicted with B (tB) and C (tC) then: 
 

)1sin()()( 0
20 




teAtxCtu
t

                              (2) 

 
 where: tB < t < tC  and A = C·a, [V] is the maximum amplitude of the voltage. 

The voltage between B and C -from Fig. 1b- is also drawn in Fig. 2a, 

considering tB = 0 and tC = 8.5 s. 

The best way to check if the theoretical model from Eq. (2) correctly 

describes the experimental free response signal from Fig. 2a is the computer 

aided numerical fitting. The residual of curve fitting indicates the accuracy of 

the model. The best fitting means to find the appropriate values for the 

parameters (A, ξ, ω0 and φ) involved in Eq. (2) in order to obtain a theoretical 

voltage evolution u
t
(t) which fits with maximum accuracy on the experimental 

voltage u
e
(t). 

A computer aided fitting technique based on the minimal value of the 

cumulative error ε, [V] - depicted in Eq. (3) - was developed in order to find the 

best approximation for the parameters A, ξ, ω0 and φ involved in u
t
(t) definition. 
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With ε = 0 (a hypothetical situation) the theoretical and experimental voltages 

totally fit. An appropriate range and an increment of variation for each 

parameter were established. The set of four values of these parameters which 

produce a minimal cumulative error ε describes - according to Eq. (2) - the best 

fitting curve.  

 

4. Experimental Results (I) 
 

According to the procedure previously described, the experimental 

signal from Fig. 2a was numerically fitted. The values of parameters involved 

in Eq. (2) founds by fitting are written bellow in Table 1: 

 
Table 1 

Values of Fitting Parameters (a Single Fitting, for tB < t < tC) 

A, [V] ξ, []·100 ω0, [rad/s] φ, [rad] 

5.2580 0.3792 112.9871 1.4196 
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Fig. 2b presents the evolution of the residual (u
e
(tj)- u

t
(tj) with tB < tj < tC,). 

It is clear that the theoretical curve doesn’t fit well the experimental evolution. 

Definitely this does not happen because of the fitting technique. The only available 

hypothesis is that the damping ratio and undamped angular frequency on 

experimental signal are not constant related to time. It is obvious that the beating 

phenomenon on Fig. 2b indicates certainly a variable undamped angular frequency. 

With a good approximation it can be considered that the model depicted 

in Eq. (2) is available only for small intervals of time (e.g. Δt = 0.5 s). The signal 

fitting has been made once again on each interval (with (k-1)·Δt < ti <= k Δt), 

with the values found for fitting parameters written in Table 2. Before fitting, 

the evolution u
e
(tj) on each interval was moved in origin on the abscissa.  

 
Table 2 

Values of Fitting Parameters (Fitting on Intervals (k-1) Δt < ti <= k·Δt) 

k Ak, [V] ξk, []·100 ω0k, [rad/s] φk, [rad] 

1 5.4757 0.4421 112.8134 1.5193 

2 4.2637 0.4291 112.8692 1.4036 

3 3.3522 0.3978 112.9239 1.3173 

4 2.6813 0.3792 112.9726 1.2601 

5 2.1656 0.3621 113.0080 1.2254 

6 1.7644 0.3498 113.0403 1.2082 

7 1.4467 0.3480 113.0649 1.2060 

8 1.1865 0.3373 113.0864 1.2168 

9 0.9814 0.3384 113.1050 1.2401 

10 0.8121 0.3321 113.1154 1.2717 

11 0.6720 0.3237 113.1295 1.3096 

12 0.5592 0.3201 113.1396 1.3518 

13 0.4655 0.3154 113.1499 1.4034 

14 0.3877 0.3107 113.1583 1.4563 

15 0.3237 0.3102 113.1663 1.5113 

16 0.2696 0.3100 113.1703 1.5722 

17 0.2253 0.3113 113.1660 1.6423 

 
 This technique of numerical fitting produces much better results as 

clearly is proved by the evolution of the residual given in Fig. 2c. Here the 

maximum peak to peak magnitude is 33 times less than in Fig. 2b. At the end of 

the evolution the residual is dominated by mechanical and electrical noise 

(vibrations in the environment and electromagnetic fields). At the beginning, the 

residual is possible dominated by some other excited vibration modes (poorly 

described by the sensor PS). 

 As expected, the damping ratio value is not constant, it has a relatively 

important variation: it decreases with the decreasing of vibration amplitude (as 
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it is also graphically depicted in Fig. 3), while the undamped angular frequency 

increases slowly (as it is also graphically depicted in Fig. 4).  
 

 

 
 

Fig. 3 – Evolution of damping ratio ξk (x100) related to vibration 

 amplitude ak=Ak/C. 

 
 

 
 

Fig. 4 – Evolution of undamped angular frequency ω0k related to 

vibration amplitude ak=Ak/C. 
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 This means that the model proposed in Eq. (1) and Eq. (2) should be 

revised if it is used for large intervals of time. This dependence of damping ratio 

by vibration amplitude seems to be an important item useful in dynamics of 

cantilever beams.  

For example, related with the researches exposed in (Horodincă, 2013), 

this result explains why when a vibratory mechanical system is actively 

supplied with positive mechanical modal power (which produces negative 

synthetic damping on first flexural mode of vibration) beyond of the stability 

limit, the amplitude of vibrations increases (and the absorbed modal power too) 

up to a certain limit depending by synthetic damping value. At this limit, the 

passive (positive!) damping in system (which increases with the increasing of 

amplitude) completely cancel the synthetic damping (negative, constant), the 

total damping becomes zero. The actuation input power flow becomes equal 

with the output (passive) power flow. 

 

5. Signal Processing Technique (II)  

 

 Generally speaking the first signal processing technique exposed before 

(by curve fitting) has an important disadvantage: it takes time to apply. There is 

a simpler way to find out the evolution of ξ and ω0 related by vibration 

amplitude. 

On the evolution depicted in Fig. 2a let be ai and ai+1 two consecutive 

current values of the signal amplitude (each one achieved at the instant times ti 

and ti+1 respectively), according to Fig. 5a. These amplitudes are written with 

the considerations from Eq. (2) as follows: 
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where: ti+1-ti = Tj is the value of current period of the signal, and ω0i is the 

current value of the undamped angular frequency, related by the current value 

of damping ration ξi and damped angular frequency ω = 2·π/Tj (Kelly, 2000) by 

equation: 
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In order to simplify this approach, let consider that ξi = ξi+1 and ω0i = ω0(i+1). 

Let be δi the current value of the logarithmic decrement defined as: 
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These two last equations allow the calculus of current values for ω0i and 

 ξi, considering that ai, ai+1 and Tj are previously determined by computer aided 

analysis of the signal from Fig. 2a, see the symbolic approach from Fig. 5a . If 

we assume that n = 2·π/Tj, m = δi/Tj and h = m/n, then ξi is given by:  
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With this result, the Eq. (5) allows the calculus for ω0i. 
 

 
 

Fig. 5 – a) A symbolic approach for determination of amplitudes ai, ai+1 and period Tj; 

b) Some considerations related to exact calculus of period Tj.  

 
 It is important to highlight that (ti, ai) and (ti+1, ai+1) are two signal 

samples. The values of amplitudes and instant times (and consequently of 

current period Tj of the signal) are more accurately determined if smaller 

sampling period (or a bigger sampling rate) is used. Here the sampling rate is 

10,000 s
-1

 (or 278 samples per signal period, approximately). The accuracy of 

amplitudes is not a critical item, whereas are involved mainly in the definition 

of damping ratio (which has an important variation as was pointed in Fig. 3). 

But the accuracy of current period Tj - whereas is involved mainly in the 

definition of undamped angular frequency (with a very small variation as was 

already pointed in Fig. 4) - is very important. 
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 For this reason, the highest accuracy possible technique for determining 

the value of Tj was developed according to Fig. 5b. The numerical evolution of 

the vibration elongation x(t) is graphically depicted as a succession of points 

(samples) connected by line segments. Let be (tk, xk) and (tk+1, xk+1) the 

coordinates of two neighbouring points placed below and above the abscissa 

axis t = 0 (generally with xk < 0 and xk+1 > 0). Here tk+1-tk = Δt is the sampling 

period already introduced before. Let be ti
*
 = tk+ta the abscissa value for the 

point of intersection of segment line with abscissa axis. There are two similar 

triangles on Fig. 5b, so ta and ti
*
 can be described as: 
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A similar description can be done for next intersection *
1it of x(t) 

evolution with abscissa axis, so the exact value of current period is given by:  
 

                                         **
1 iij ttT                                                       (9) 

 

 In this approach, Eq. (8) is available also if xk = 0 or xk+1 = 0. This 

calculation method is also available for an accurate calculus of period (and 

frequency as well) for all periodic experimental signals numerically described.  

 
 

Fig. 6 – Evolution of damping ratio ξi (x100) versus vibration amplitude ai. 
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6. Experimental Results (II) 

 

With these considerations, the evolution of damping ratio ξi versus 

amplitude ai was experimentally determined - Eq. (7) - as it is graphically 

depicted in Fig. 6. 

 The evolution is quite similar with those already given in Fig. 3. But 

generally speaking it is more accurate and contains more experimental points 

(151 values). In the area marked with A (here and in Fig. 7 as well) the accuracy 

is bad because of the measurement noise (electrical and mechanical). This noise 

becomes important related with vibration amplitude value (which has a low 

level here).  

Fig. 7 shows the evolution of undamped angular frequency ω0i versus 

vibration amplitude ai based on Eq. (5). 

 

 
 

Fig. 7 – Evolution of undamped angular frequency ω0i versus vibration amplitude ai. 

 
Here also a comparison with Fig. 4 proves that this new signal 

processing technique is correct. 

Besides accuracy, this technique has also the advantage of a facile 

employment. The evolutions from Figs. 6 and 7 can be numerically fitted in 

order to find out the analytical form for ξi = ξi(ai) and ω0i = ω0i(ai) useful for 

different theoretical and experimental approaches in mechanical dynamics.  
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7. Conclusions 
 

The paper proves in experimentally terms that the free response on first 

flexural vibration mode of a cantilever beam is characterized - despite the 

generally accepted theoretical model (the free response of an underdamped 

spring-mass-damper system) - by a relative significant variation of damping 

ratio ξ (according to Figs. 3 and 6) and a relatively slight variation of the 

undamped angular frequency ω0 (according to Figs. 4 and 7), both related with 

vibration amplitude evolution.  

A simple setup based on a cantilever beam with a PZT sensor, a data 

acquisition system (with numerical oscilloscope) and a personal computer was 

used, as is revealed in Fig. 1a). It is presumed that the signal delivered by 

sensor is proportional with the vibration elongation of the free end of the 

cantilever beam (on first vibration mode). 

 The evolutions of ξ and ω0 were evaluated using two different computer 

processing techniques for the signal delivered by the PZT sensor placed in the 

proximity of the fixed end of the cantilever beam during the free response of the 

cantilever beam.  

The first technique (relatively accurate) is based on numerically fitting 

of the experimental signal divided in sequences with short durations of time (0.5 s), 

while the second technique (more accurate and faster) is based on numerical 

processing of the evolution of amplitude and period of the signal. Both 

techniques were conceived and developed by author. 

These results are interesting for scientific research in dynamics 

(https://www.mathworks.com/help/pde/). For example, an ambiguous item from 

a previous research (Horodincă, 2013) is clarified here: the increasing of passive 

damping ratio when the amplitude of vibration increases explain why if a 

negative synthetic modal damping is generated (by positive active modal 

mechanical power flow in a system with positive velocity-force feedback) the 

amplitude of vibration increases until the passive (positive) damping completely 

cancel the synthetic (negative) damping. If the total modal damping (synthetic 

and passive) is negative, the system becomes unstable, it starts vibrating. 

In the near future the theoretical and experimental approach presented 

here (related by second processing technique of the signal) will be applied on 

the same setup, but using as strain sensor for flexural vibration a Wheatstone 

bridge with strain gauges placed also by bonding near the fixed end of the 

cantilever, collocated with the PZT sensor. A previous result of research 

(Horodincă, 2013) indicates that between the strain (as it is described by PZT 

sensor with an electrical voltage evolution) and vibration x(t) at free end in 

cantilever beam (due to the flexural vibration on the first mode) exists a shift of 

phase (with a presumed average value of 14
o
). A future research should 

establish a measurement and compensation technique in order to eliminate this 

phase shifting when the PZT transducers are used as sensor and actuator in a 
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close loop feedback control system. Otherwise a feedback with a pure 

proportional control law acts as a proportional-derivative feedback (with a small 

derivative gain because this shift of phase). 
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CERCETAREA EXPERIMENTALĂ A RĂSPUNSULUI LIBER 

 PE PRIMUL MOD DE VIBRAŢIE (ÎNCOVOIERE) PENTRU O GRINDĂ 

ÎNCASTRATĂ LA UN CAPĂT 

 

(Rezumat) 

 

Lucrarea cercetează răspunsul liber pe primul mod de vibraţie flexională 

(încovoiere) pentru o grindă încastrată la un capăt, reflectat în semnalul furnizat de un 

sensor piezoelectric de tip plachetă, plasat prin lipire în proximitatea capătului încastrat 

al grinzii. Modelul teoretic general acceptat al acestui răspuns liber (amortizat vâscos, 

cu valori constante pentru  gradul de amortizare şi pulsaţia proprie neamortizată) este 

contrazis, variaţii importante ale acestor parametri, ambii depinzând de amplitudinea 

vibraţiei. Cercetările au fost efectuate pe un stand experimental simplu (grindă 

încastrată la un capăt, senzor, osciloscop numeric şi calculator), cu aplicarea unor 

tehnici proprii de prelucrare asistată de calculator a semnalului furnizat de senzor. 


