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Abstract. In this paper, we consider different problems concerning 

regularity viewed as an approximation property in several hit-and-miss 
hypertopologies as a foundation for self-similarity and fractality from a 
mathematical - physical perspective. Since in some examples of fractals, as the 
neuronal network or the circulatory system, the uniform property of the 
Hausdorff hypertopology is not appropriate, the Wijsman hypertopology may be 
preferred because it could describe better the pointwise properties of fractals. 
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1. Introduction 

 
Hypertopologies represent an useful tool in optimization, convex 

analysis, economics, image processing, sound analysis and synthesis and 
many other fields. In this sense, important theoretical and practical results 
have been established (Beer, 1993; Apreutesei, 2003; Hu & Papageorgiou, 
1997) - concerning Vietoris topology, (di Lorenzo & di Maio, 2006) - melodic 
similarity, Lu et al. (2001) - word image matching, involving Hausdorff-
Pompeiu metric. Approaches of topology in psychology have been also 
obtained (Lewin et al., 1936; Brown, 2012). 

All hypertopologies known so far are of the hit-and-miss type, which 
led to their unification under a single one - the Bombay Hypertopology (di Maio 
& Naimpally, 2008). 

The idea of modeling phenomena behavior at multiple scales has 
become a useful tool in pure and applied mathematics and physics. Fractal-
based techniques lie at the heart of these areas, since fractals are multi-scale 
objects, which often describe such phenomena better than traditional 
mathematical models. Hyperspace theories concerning the Hausdorff metric and 
the Vietoris topology have been developed as a foundation for self-similarity 
and fractality (Kunze et al., 2012; Wicks, 1991). 

Topological methods facilitate the study of the dynamical systems 
chaotic nature (Sharma & Nagar, 2010; Wang et al., 2009; Goméz-Rueda et al., 
2012; Li, 2012; Liu et al., 2009; Ma et al., 2009; Fu & Xing, 2012), since they 
are collective phenomenon emerging out of many segregated components. Most 
of these systems are collective (set-valued) dynamics of many units of 
individual systems. The underlying dynamics of the dynamical systems is set-
valued, collective (Edalat, 1995; GavriluŃ & Agop, 2013).  

Since many phenomena with complex patterns and structures are 
widely observed in brain, this permits the mathematical modeling and analysis 
of neuronal networks from the dynamical systems set-valued viewpoint. These 
phenomena are some manifestations of a multidisciplinary paradigm called 
emergence or complexity. They share a common unifying principle of dynamic 
arrays. Precisely, interconnections of a sufficiently large number of simple 
dynamic units can exhibit complex and self-organizing behaviors. System’s 
complexity can be measured by the topological entropy of the topological 
dynamical system. In this sense, it has been proposed a new definition of the 
topological entropy for continuous mappings on arbitrary topological spaces 
(Liu et al., 2009). 

In recent years, in computational graphics and automatic recognition of 
figures problems, it was necessary to measure accurately the matching, i.e. to 
calculate the distance between two sets of points. So, one should use an 
acceptable distance which has to satisfy the first condition in the definition of a 
distance - the distance is zero if and only if the overlap is perfect. An 
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appropriate metric is the Hausdorff metric measuring the degree of overlap of 
two compact sets. In some examples of fractals (the neuronal networks, the 
circulatory system), Hausdorff topology is not appropriate due to its uniform 
property. As a more convenient topology on the set of values of the 
multifunctions which we study, Wijsman topology may be preferred instead of 
the Hausdorff one, because Wijsman topology could describe better the 
pointwise properties of fractals. Recently, generalized fractals in hyperspaces 
endowed with Hausdorff, or with Vietoris hipertopology have been studied 
(Andres & Fišer, 2004; Andres & Rypka, 2012; Banakh & Novosad, 2013; 
Kunze et al., 2012). 

On the other hand, together with the increasing interest in 
hypertopologies, non-additive set-valued measure theory continued to 
develop. In this context, regularity is known as an important continuity 
property with respect to different topologies. At the same time, it can be 
viewed as an approximation property of different “unknown” sets by other 
sets for which we have more information (GavriluŃ & Agop, 2015a; GavriluŃ 
& Agop, 2015b). From a mathematical perspective, this approximation is 
usually done from the left by closed sets (or more restrictive, by compact sets) 
and/or from the right by open sets. As a theoretical application of regularity, 
classical Lusin theorem concerns with the existence of continuous restrictions 
of measurable functions and it is a very important and useful result for 
discussing different kinds of approximation of measurable functions defined 
on special topological spaces. It has applications in the study of convergence 
of sequences of Sugeno and Choquet integrable functions. Regular Borel 
measures are important in studying Kolmogorov fractal dimensions (Barnsley, 
1988; Mandelbrot, 1983). 

As it is well known, artificial neural networks are inspired by the 
biological nervous system, in particular, the human brain and one of the most 
interesting characteristics of the human brain is its ability to learn. An 
application of Lusin's theorem in the study of the approximation properties of 
neural networks was established (Li et al., 2007) since the learning ability of a 
neural network is closely related to its approximating capabilities. Although 
simplified, artificial neural networks can model this learning process by 
adjusting the weighted connections found between neurons in the neuronal 
network. This effectively emulates the strengthening and weakening of the 
synaptic connections found in our brains. All these enable the network to learn. 

 
2. Results and Discussions 

 
Hausdorff and Wijsman topologies are hit-and-miss hypertopologies 

(Apreutesei, 2003; Beer, 1993; GavriluŃ & Apreutesei, 2016; Kunze et al., 
2012; Hu & Papageorgiou, 1997 (Ch. 1); Precupanu et al., 2016 (Ch. 1); 
Apreutesei in Precupanu et al., 2006 (Ch. 8); di Maio & di Naimpally, 2008).  
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Suppose ( , )X d  is an arbitrary metric space. The Wijsman topology 

Wτ  on ( )P
0
X  is the supremum W Wτ τ+ −∪  of the upper Wijsman topology Wτ

+  

and the lower Wijsman topology Wτ
− , the family  

0 0
0 0

{ ( ); ( , ) } { ( ); ( , ) }x X x XM X d x M M X d x M
ε ε

ε ε∈ ∈
> >

= ∈ < ∪ ∈ >F P P  

being a subbase for Wτ  on 0 ( ).XP   

 

Remarks 1. I) If 0{ } ( )i i IM X∈ ⊂ P , the following statements are 

equivalent: 

i) 0 ( );
W

iM M X
τ

→ ∈P   

ii) for every x X∈ , ( , ) ( , )
p

id x M d x M→  (pointwise convergence) ;   

iii) 
W

iM M
τ +

→  and ;
W

iM M
τ −

→   

II) i) 
W

iM M
τ +

→  iff for every x X∈ , liminf ( , ) ( , )i
i

d x M d x M≥  (i.e., 

for every 0 ε ε ′< <  with ( , )S x Mε ′ ∩ =∅ , there is 0i I∈  so that for every 

i I∈ , with 0i i≥ , we have ( , ) ).iS x Mε ∩ =∅   

ii) 
W

iM M
τ −

→  iff for every ,x X∈ limsup ( , ) ( , )i
i

d x M d x M≤  (i.e., 

for every dD τ∈  with D M∩ ≠ ∅ , there is 0i I∈  so that for every i I∈ , 

with 0i i≥  we have ).iD M∩ ≠∅   

III) (GavriluŃ & Apreutesei, 2016) i) If ( , )X d  is a complete, separable 

metric space, then the family ( )f XP  of all non-empty closed subsets of X  

endowed with the Wijsman topology is a Polish space (Beer, 1993). Moreover, 
the space ( ( ), )f WX τP  is Polish iff ( , )X d  is Polish. 

ii) ( , )X d  is separable iff ( )f XP  is either metrizable, first-countable 

or second-countable. The dependence of the Wijsman topology on the metric d  
is quite strong. Even if two metrics are uniformly equivalent, they may generate 
different Wijsman topologies. 
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IV) If 0 1 2( ),{ , ,..., }nM X x x x X∈ ⊂P  and 0ε >  are arbitrarily 

chosen, then Wτ
−  is generated by the family 

1 2 0( , , ,..., , ) { ( ); ( , ) ( , ) ,W n i iU M x x x N X d x N d x Mε ε− = ∈ < +P ∀ 

1, },i n= while Wτ
+  is generated by the family 

1 2 0( , , ,..., , ) { ( ); ( , ) ( , ) ,W n i iU M x x x N X d x M d x Nε ε+ = ∈ < +P ∀ 1, }.i n=   

The Hausdorff-Pompeiu pseudo-metric h  on ( )f XP  is defined by  

( , ) max{ ( , ), ( , )},h M N e M N e N M=  

∀ , ( )fM N X∈P , where ( , )e M N = sup ( , )
x M

d x N
∈

 is the excess of M  over 

N  and ( , ) inf ( , )
y N

d x N d x y
∈

=  is the distance from x  to N  (with respect to 

the metric )d . 

The topology Hτ induced by the Hausdorff pseudo-metric h  is 

called the Hausdorff-Pompeiu hipertopology on ( )f XP . On ( )bf XP  (the 

family of all nonvoid bounded closed subsets of X ), h  becomes a veritable 
metric. If, in addition, X  is complete, then the same is ( )f XP  (Hu & 

Papageorgiou, 1997) .   
Let ( )k XP  be the family of all nonvoid compact subsets of X . We 

observe that ( , ) ( , ),e N M h M N= ∀ , ( ),fM N X∈P  with .M N⊆ Also, 

( , ) ( , ),e M N e M P≤ ∀ , , ( ),fM N P X∈P with P N⊆  and 

( , ) ( , ),e M P e N P≤ ∀ , , ( ),fM N P X∈P with .M N⊆  Generally, even if 

, ( ),kM N X∈P then ( , ) ( , ).e M N e N M≠  If ( )fM X∈P  and 0ε > , let be 

( , ) { ; , ( , ) }( { ; , ( , ) }),
m M

S M x X m M d x m x X m M d x mε ε ε
∈

= ∈ ∃ ∈ < = ∪ ∈ ∈ <

 
Since ( , )h M N ε<  iff ( , )M S N ε⊂  and ( , )N S M ε⊂ , we get:  

( , ) inf{ 0; ( , ), ( , )}.h M N M S N N S Mε ε ε= > ⊂ ⊂  

In other words, H H Hτ τ τ+ −= ∪  is the supremum of the upper 

Hausdorff topology Hτ
+  (having as a base family 0{ ( , )} ,U M εε+

> where 

( , ) { ( ); ( , )}fU M N X N S M+ = ∈ ⊂ε εP and the lower Hausdorff topology 
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Hτ
−  (having as a base the family 0{ ( , )}U M εε−

> , where 

( , )U M ε− = { ( );fN X∈P  ( , )})M S N ε⊂  . 

Another equivalent expression of the Hausdorff distance between two 
sets , ( )fM N X∈P  is: 

( , ) sup{| ( , ) ( , ) |; }.h M N d x N d x M x X= − ∈  

From here, the uniform aspect of the Hausdorff topology derives - it is 
the topology on ( )f XP  of uniform convergence on X  of the distance 

functionals ( , )x d x M֏ , with ( ).fM X∈P  Hausdorff topology is invariant 

with respect to uniformly equivalent metrics (Apreutesei, 2003). 
 

Remarks 2. (Apreutesei, 2003; GavriluŃ & Apreutesei, 2016; 
Precupanu et al., 2016 (Ch. 1); Apreutesei in Precupanu et al., 2006 (Ch. 8)).  

i) If one replaces the pointwise convergence of Wijsman convergence 
by the uniform convergence (in x ), then Hausdorff convergence induced by the 
Hausdorff pseudometric is obtained. Generally, Hausdorff topology Hτ  is finer 

than Wijsman topology .Wτ  Hausdorff and Wijsman topologies on ( )f XP  are 

coincident iff ( , )X d  is totally bounded. 

ii) If X  is a real normed space, then, on the class of monotone 
sequences of subsets of ( )k XP , Hausdorff and Wijsman topologies are 

equivalent. 
iii) Hausdorff metric on ( )k XP  is an essential tool in the study of 

fractals, hyperfractals, multifractals and superfractals – (Andres & Fišer, 2004; 
Andres & Rypka, 2012; Kunze et al., 2012).  

The space ( ( ), )k X hP  is called ''the life space of fractals'' (Barnsley, 

1988). In a more general setting than using Hausdorff topology, a fractal 
approach has recently been proposed using Vietoris topology (Banakh & 
Novosad, 2013). 

In what follows, we introduce regularity properties. An appropriate 
framework is the following: 

Let T  be a locally compact, Hausdorff space, C  a ring of subsets of T  
and X  a real normed space. For instance, C  might be the Baire δ -ring 0B  

(respectively, the Baire σ -ring 0
′
B ) generated by the lattice of all compact 

subsets of T which are Gδ  (i.e., countable intersections of open sets) or C  is 

the Borel δ -ring B  (respectively, the Borel σ -ring ′
B ) generated by the 
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lattice K of all compact subsets of T. Obviously, 0
′⊂ ⊂B B B  and 0 0.′⊂B B  

If T  is metrisable or if it has a countable base, then any compact set K T⊂  is 

Gδ . In this case, 0 =B B  (Dinculeanu, 1964, Ch. III, p. 187), so 0 .′ ′=B B   

Regularity can be viewed as a continuity property with respect to a 
suitable topology on ( )TP  (Dinculeanu, 1964, Ch. III, p. 197): 

In the locally compact Hausdorff space T  we denote by D  the family 
of all open subsets of .T and by ( , ) { / },K D A T K A D= ⊂ ⊂ ⊂I  

∀K ∈K ,∀D∈D , with K D⊂ . 
We observe that ( , ) ( , ) ( , )K D K D K K D D′ ′ ′ ′∩ = ∪ ∩I I I , 

∀ ( , ),K DI  ( , )K D′ ′I . In consequence, the family { ( , )}K
D

K D ∈
∈
KI

D

 is a base 

of a topology τɶ  on ( ).TP  We denote by τɶ , the topology induced on any 

subfamily ( )T⊂S P  of subsets of .T  By lτɶ  (respectively, )rτɶ  we denote the 

topology induced on { ( )} {{ / }}K KK A T K A∈ ∈= ⊂ ⊂K KI (respectively, 

{ ( )}DD ∈ =DI {{ / }}DA T A D ∈⊂ ⊂ D ) (Dinculeanu, 1964, Ch. III, pp. 

197−198) .   
 

Definition 3. A class ( )T⊂F P  is dense in ( )TP  with respect to the 

topology induced by τɶ  if for every K ∈K  and every D∈D , with K D⊂ , 
there is A∈C  such that K A D⊂ ⊂ . 
 

Remarks 4. i) 0 0, , ,′ ′
B B B B  are all dense in ( )TP  with respect to the 

topology induced by .τɶ   
ii) For every A∈C , there always exists D∈ ∩D C  so that .A D⊂   

iii) If =C B  or ′
B , then for every A∈C , there exist K ∈ ∩K C  and 

D∈ ∩D C  such that .K A D⊂ ⊂   
(these statements can be easily verified since T  is locally compact 

(Dinculeanu, 1964, Ch. III, p. 197)). 
Definition 5. A set multifunction : ( )f Xµ →C P  is monotone (with 

respect to the inclusion of sets) if ( ) ( ),A Bµ µ⊆  for every ,A B∈C  

with .A B⊆   

Example 6. Suppose X  is an AL-space (i.e., a real Banach space 
equipped with a lattice order relation, which is compatible with the linear 
structure of X , such that the norm || ||⋅  on X  is monotone, that is, | | | |x y≤  

implies || || || ||x y≤ , for every , ,x y X∈  and also satisfying the supplementary 

condition || || || || || ||x y x y+ = + , for every ,x y X∈ , with , 0)x y ≥ . 
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( 1 1, ( ),L lµR  are some examples of AL-spaces). 

Let Λ  be the positive cone of .X  By [ , ]x y  we mean the interval 

consisting of all z X∈  so that .x z y≤ ≤  Suppose :m →ΛC  is an arbitrary 

set function, with ( ) 0.m ∅ =  We consider the induced set multifunction  

: ( )bf Xµ →C P  defined for every A∈C  by ( ) [0, ( )]A m Aµ = . We observe 

that 
0 ( )

( ( ),{0}) sup || || || ( ) ||
x m A

h A x m Aµ
≤ ≤

= = , for every , .A B∈C  If, 

particularly, X = R  and :m +→ RC  is an arbitrary set function, with 

( ) 0m ∅ = , then the induced set multifunction is : ( )bfµ → RC P  defined for 

every A∈C  by ( ) [0, ( )]( )A m Aµ = ⊂ R . We observe that µ  is monotone if 

and only if the same is m . 
In what follows, let 1 2: ( , ) ( ( ), )f Xµ τ τ→C P  be a monotone set 

multifunction, where 1 { , , }l rτ τ τ τ∈ ɶ ɶ ɶ  and 2 { , }H Wτ τ τ∈  2 2 2τ τ τ+ −= ∪ , where 

2 { , }H Wτ τ τ+ + +∈  and 2 { , }.H Wτ τ τ− − −∈  Let 1 {{ ( , )} ,K
D

K D ∈
∈

∈ K

D

B I  

{ ( )} ,{ ( )} }K DK D∈ ∈K DI I , be a base for 1τ  and 2B  be a base for 2τ . 
 

Definition 7. A set A∈C  is 2( )−τ regular if 

1 2: ( , ) ( ( ), )f Xµ τ τ→C P  is continuous at A , i.e. for every ( ) ,i i IA A∈ ⊂ C , 

with 
1

iA A
τ

→ , we have 
2

( ) ( )iA A
τ

µ µ→ .   

When 1τ  is τɶ , or, respectively lτɶ  or rτɶ , we get the notions of 

( 2 )τ − regularity, ( 2 ) lRτ − − regularity (also called inner regularity) or 

( 2 ) rRτ − − regularity (also called outer regularity). 
 
The statements below easily follow: 
 

Proposition 8. An arbitrary set A∈C  is: 
i) regular if and only if for every 2∈V B , with ( ) ,Aµ ∈V  there exist 

,K K A∈ ∩ ⊂K C  and ,D D A∈ ∩ ⊃D C  so that for every ,B∈C  with 

K B D⊂ ⊂ , we have ( )Bµ ∈V ; 

ii) lR − regular if and only if for every 2∈V B , with ( ) ,Aµ ∈V  there 

exists ,K K A∈ ∩ ⊂K C  so that for every ,B∈C  with K B A⊂ ⊂ , we have 

( )Bµ ∈V ; 
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iii) rR −  regular if and only if for every 2∈V B , with ( ) ,Aµ ∈V  there 

exists ,D D A∈ ∩ ⊃D C  so that for every ,B∈C  with A B D⊂ ⊂ , we have 

( ) .Bµ ∈V   

Remark 9. I) Any K ∈K  is lR − regular; any D∈D  is rR − regular. 

II) For 2 Hτ τ=  or Wτ  we obtain the notions of regularity from 

(GavriluŃ & Apreutesei, 2016; GavriluŃ, 2010; GavriluŃ, 2012). For instance, if 

2 Hτ τ= , then as a consequence of the monotonicity of µ , we have the 

following expressions of regularity as an approximation property (in the sense 
of GavriluŃ, 2010): 

i) regular if for every 0ε > , there are ,K K A∈ ∩ ⊂K C  and 

,D D A∈ ∩ ⊃D C  so that ( ( ), ( )) ,h A Bµ µ ε<  for every ,B∈C  with 

.K B D⊂ ⊂   
ii) lR – regular if for every 0ε > , there exists ,K K A∈ ∩ ⊂K C  so 

that ( ( ), ( ))h A Bµ µ = ( ( ), ( )) ,e A Bµ µ ε<  for every ,B∈C  with 

.K B A⊂ ⊂   
iii) rR – regular if for every 0ε > , there exists 

,D D A∈ ∩ ⊃D C such that ( ( ), ( ))h A Bµ µ =  ( ( ), ( )) ,e B Aµ µ ε<  for every 

,B∈C  with .A B D⊂ ⊂  

III) i) µ  is regular if and only if for every 0ε > , there are 

,K K A∈ ∩ ⊂K C  and ,D D A∈ ∩ ⊃D C  so that  ( ( ), ( )) ;e D Kµ µ ε<  

ii) µ  is lR -regular if and only if for every 0ε > , there is 

,K K A∈ ∩ ⊂K C  so that ( ( ), ( )) ;e A Kµ µ ε<  

iii) µ  is rR -regular if and only if for every 0ε > , there is 

,D D A∈ ∩ ⊃D C  so that ( ( ), ( ))e D Aµ µ ε< . 
 

In what follows, regularity and fractality are considered from a physical 
perspective. In this sense, we present some physical correspondences with hit-
and-miss topologies. Several regularizations by sets of functions of ε -
approximation type scale and their implications will be also provided. 

The same as some physical concepts, hit-and-miss hypertopologies 
become consistent when considered together, although they are composed of 
two independent parts - the upper and the lower hypertopologies. For example, 
in physical terms, the non-differentiability of the curve motion of the physical 
object involves the simultaneous definition at any point of the curve, of two 
differentials (left and right). Since we cannot favor one of the two differentials, 
the only solution is to consider them simultaneously through a complex 
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differential (its application, multiplied by dt , where t  is an affine parameter, to 
the field of space coordinates implies complex velocity fields). 

If we consider a fractal function ( ),f x  with [ , ]x a b∈ (one of the 

trajectory's equation) and the sequence of the values of the variable x :   

0 1 0 0 0, ,..., ,..., .a k n bx x x x x x k x x n xε ε ε= = + = + = + =                       (1) 
 

Then by ( , ),f x ε  we denote the fractured line connecting the points  

0( ),..., ( ),..., ( ).k nf x f x f x  

The broken line will be considered as an approximation which is 
different from the one used before. We shall say that ( , )f x ε  is an 

ε − approximation scale. If we consider the ε − approximation scale ( , )f x ε  

of the same function, since ( )f x  is similar almost everywhere, if ε  and ε  are 

small enough, then the two approximations ( , )f x ε  and ( , )f x ε  must lead to 
the same results when we study a fractal phenomenon by approximation. If we 
compare the two cases, then to an infinitesimal increase dε  of ε , it 

corresponds an increase dε  of ε , if the scale is dilated.  
Simultaneous invariance with respect to both space-time coordinates 

and the resolution scale induces general Scale Relativity Theory (El-Nabulsi, 
2012; El-Nabulsi, 2013). These theories are more general than Einstein's 
general Relativity Theory, being invariant with respect to the generalized 
Poincaré group (standard Poincaré group and dilatation group) (El-Nabulsi, 
2012; El-Nabulsi, 2013). Basically, we discuss various physical theories built 
on manifolds of fractal space-time. They turn out to be reducible to one of the 
following classes: 

i) Scale Relativity Theory (Nottale, 1993; Nottale, 2011) and its 
possible extensions (El Naschie et al., 1995). It is assumed that the motion of 
microparticles takes place on continuous but non-differentiable curves. In 
such context, regularization works using sets of functions of 
ε − approximation type scale; 

ii) Transition in which to each point of the motion trajectory, a 
transfinite set is assigned (in particular, a Cantor type set (El Naschie et al., 

1995) ( )ε ∞  model of space-time), in order to mimic the continuous (the 
trans-physics). In such context, the regularization of “vague” sets by known 
sets works; 

iii) Fractal string theories containing simultaneously relativity and 
trans-physics (Hawking & Penrose, 1996; Penrose, 2004). The reduction of the 
complex dimensions to their real part is equivalent to Scale Relativity Type 
theories, while reducing them to the imaginary part of their complex dimensions 
generates trans-physics. In such context, the simultaneous regularization by sets 
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of functions of ε − approximation type scale and also by “known” sets works. 
The “reduction” of the complex dimensions to their real part requires the 
regularization by sets of functions of ε − approximation type scale, while the 
“reduction” to their imaginary part requires regularization with “known” sets. 
We now assume that the complex system particle moves on continuous, but 
non-differentiable curves (fractal curves). It is well-known that the nervous 
influx (through brains neuronal network) takes place on continuous but non-
differentiable curves in the hydrodynamics variant of scale relativity (with 
arbitrary constant fractal dimension). In this way, the complex systems 
dynamics can be simplified and all physical phenomena involved depend not 
only on space-time coordinates but also on space-time scale resolution. That is 
why physical quantities describing the complex systems dynamics can be 
considered as fractal functions. Once accepted such a hypothesis, some 
consequences of non-differentiability by Scale Relativity Theory (SRT) are 
evident (Nottale, 1993; Nottale, 2011; GavriluŃ & Agop, 2015a). In such 
perspective, some applications of non-differentiability in biological systems 
were recently given by Stoica et al., 2015; Duceac et al., 2015a; Duceac et al., 
2015b; Doroftei et al., 2016; Nemeş et al., 2015; Postolache et al., 2016; Ştefan 
et al., 2016. 

i) Physical quantities that describe the complex system are fractal 
functions, i.e., functions depending both on spatial coordinates and time as well 

as on the scale resolution, tδ
τ  (identified with dt

τ  by substitution principle 

(Nottale, 1993, Nottale, 2011)). In classical physics, the physical quantities 
describing the dynamics of a complex system are continuous, but differentiable 
functions depending only on spatial coordinates and time; 

ii) Two complementary representations result: the formalism of the 
fractal hydrodynamics (at the continuum level) on one hand, and Schrödinger’s 
type theory (at the discontinuum level) on the other hand. Moreover, the 
chaoticity, either through turbulence in the fractal hydrodynamic approach, or 
through stochasticization in the Schrödinger type approach, is generated only by 
the non-differentiability of the motion trajectories in a fractal space. We note 
that some consequences of the turbulence in biological systems have been 
recently given by Duceac, 2015c; Duceac et al., 2016; Păvăleanu et al., 2016, 
Velenciuc et al., 2016; Duceac et al., 2017. 

 
3. Conclusions 

 
A mathematical-physical perspective on fractality, regularity and 

several hit-and-miss hypertopologies is considered. In future works, we aim to 
develop a neuronal network fractal theory using Wijsman topology, since its 
pointwise character could characterize some properties better than Hausdorff 
topology does. 
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PROPRIETĂłI DE APROXIMARE DIN PERSPECTIVĂ 
 FIZICO-MATEMATICĂ. POSIBILE CORELAłII CU FRACTALITATEA 

REłELELOR NEURONALE 
 

(Rezumat)  
 

În această lucrare, sunt abordate diferite probleme referitoare la proprietatea de 
regularitate, văzută ca o proprietate de aproximare în unele hipertopologii de tip loveşte-
şi-lasă. Punem astfel bazele pentru autosimilaritate şi fractalitate din perspectivă fizico-
matematică. Întrucât în unele exemple de fractali, cum ar fi reŃeaua neuronală sau 
sistemul circulator, proprietatea uniformă a hipertopologiei Hausdorff nu este potrivită, 
hipertopologia Wijsman ar putea fi preferată, putând descrie mai bine proprietăŃile 
punctuale pe care fractalii le posedă. 


