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Abstract. Properties of cellular neural networks (differentiable and non-

differentiable cellular neural networks) are given: wave number spectrum, phase 
velocity spectrum, quasi-period spectrum etc. In such perspective, the conditions 
of non-differentiable-non-differentiable cellular neural networks coherence are 
given and this could explain not only the way in which information is stored and 
transmitted in the brain but also the way in which the communications codes can 
be generated. Some implications of the model in the growth bacterial process are 
established. 
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1. Introduction 

 
According to GavriluŃ et al., 2016, two types of cellular neural networks 

(differentiable and non-differentiable cellular neural networks) are obtained. 
These cellular neural networks have some specific properties that will be 
highlighted in this paper.  

 
2. Results and Discussions 

 

2.1. Specific Properties of the Cellular Neural Networks 

 
The Toda lattices at differentiable and non-differentiable scales and by 

mapping the two corresponding associated cellular networks have some 
following characteristic parameters: 

i) Wave number spectrum  
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ii) Phase velocity spectrum  
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iii) Quasi-period spectrum  
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The significances of the quantities from (1)−(3) are given in GavriluŃ et 
al., 2016. 

Expliciting the oscillation modulus of the Toda network and the 
functionality of the associated cellular neural network at differentiable scale is 
achieved by the following degenerations of the elliptic function cn  in the 
modulus s  (Armitage, 2006) .  
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i) For 0,→s  the solution (19) from the paper of  GavriluŃ et al., 2016 
reduces to the harmonic package type sequence:  

( )cos ,   N N a N N aθ= + = +                        (4) 

which is described by the wave number spectrum  
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the phase velocity spectrum:  
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and the quasi-period spectrum  
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ii) For 1,→s  the solution (19) from GavriluŃ et al., 2016 reduces to a 
soliton package type sequence:  
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characterized by the wave number spectrum  
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the phase velocity spectrum  
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and the quasi-period spectrum  
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For = 0,s  the solution (19) from GavriluŃ et al., 2016 reduces to an 
harmonic type sequence, while for = 1s  it reduces to a soliton type one. For 
details on the degeneration of elliptic function cn  see Armitage, 2006, while 
for details related to nonlinear solutions (soliton, soliton package etc.) (Jackson, 
1992).  
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As shown before, nonlinear waves have long been an interest to 
scientists in a variety of disciplines. A multitude of applications have been 
employed, ranging from fluid dynamics and plasma physics to even 
neuroscience and biology. It is with this same interest that we have chosen the 
topic of computational waves. Waves are omnipresent, from tsunamis in the 
ocean, to gamma waves and sonic booms. In fact, there are currently several 
wave pulses propagating through the neurons in our brain due to the firing of 
action potentials. 

In the physics literature, the terms soliton and solitary wave are often 
used interchangeably. Solitary waves (and solitons) arise in both continuous 
systems such as the KdV equation and discrete systems such as the Toda lattice 
(Toda, 1981; Toda, 1983) and in both one and multiple spatial dimensions. Key 
issues in studying solitary waves also include linear versus nonlinear (of 
course), integrable versus nonintegrable, persistent versus transient, asymptotics 
(i.e., consideration of time scales), localization in physical space versus Fourier 
space, and the effects of noise. 

The important property of the Toda equation is the existence of so 
called soliton solutions, that is, pulslike waves which spread in time without 
changing their size or shape and interact with each other in a particle-like way. 
This is a surprising phenomenon, since for a generic linear equation one would 
expect spreading of waves (dispersion) and for a generic nonlinear force one 
would expect that solutions only exist for a finite time (breaking of waves). 
Obviously, our particular force is such that both phenomena cancel each other 
giving rise to a stable wave existing for all time (Jackson, 1992). 

Simultaneously, it is also achieved the explanation at non-differentiable 
scale of the Toda network oscillation modes and of the associated cellular 
neural network functionalities through the elliptic functions cn  degenerations 

in the complementary modulus .'s  
Eliminating the amplitude a  between (1) and (2) we obtain the 

following dispersion equations:  
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Nonlinearity s  generates two distinct dynamics regimes of the Toda 
lattice respectively of the cellular neural network associated to the differentiable 
scale: non-quasi-autonomous regimes (by harmonic type sequences, harmonic 
package type sequences) and quasi-autonomous regimes (by soliton type 
sequences, soliton package type sequences) respectively. The dependency A(s) -
see Fig. 2 a,b, specifies that the value 0.7s ≅  separates the two dynamic 
regimes. For 0 0.7s≤ ≤ , i.e., in non-quasi-autonomous regime, the variable 

≅)(sA  const., situation in which the first of eqs. (12) takes the form:  

( ) 26 const.pU N λ− ≅                               (14) 

while for 0.7 1s≤ ≤ , i.e., in quasi-autonomous regime, the relation (14) loses 

its validity. Simultaneously, the non-linearity 's  generates two distinct 
dynamics regimes of the Toda lattice respectively of the cellular neural network 
associated to the non-differentiable scale. 

 
2.2. The Coherence of Differentiable-non-Differentiable 

Cellular Neural Network 

 
According to our previous results, differentiable-non-differentiable 

Toda lattice pair is mathematically described by the elliptic function 2cn . Now, 
invoking a fundamental theorem from elliptic functions theory, it is well known 
that two elliptic functions are equivalent if and only if there exists an 
homographic transformation between the ratio of their periods (Armitage, 2006):  
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where 'µ and µ  define the ratios of the these elliptic functions periods. 

Moreover, if such theorem is fulfilled, then there exist an algebraic relation 
between these two elliptic functions. 

In such a framework, we shall interpret elliptic function equivalence 
theorem as a coherence condition of differentiable-non-differentiable Toda 
lattice pairs and, moreover, its consequence, as a “communication” 
(“relationship”) way of pairs. 

Now, by mapping, the previous results imply that differentiable-non-
differentiable cellular neural network pairs are coherent if and only if the 
condition (15) is fulfilled. Moreover, if this condition is fulfilled, then the pairs 
can “store” and ”transmit” information in a specific algebraic language.  
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3. Conclusions 

 
Assuming that the nervous impulse transmission through brain’s 

neuronal network is achieved on continuous and non-differentiable curves, the 
hydrodynamic version of scale relativity in arbitrary constant fractal dimension 
is presented (non-differentiable hydrodynamics) in GavriluŃ et al., 2016. In such 
context, the one-dimensional solution of the non-differentiable hydrodynamic 
model for states density is obtained in the form of spatio-temporal cnoidal 
modes, assuming that the external scalar potential is proportional with the states 
density. Moreover,  the spatio-temporal cnoidal modes are asssimilated to a 
one-dimensional Toda network and hence, by mapping, to a cellular neural 
network. 

In the present paper, we give some specific properties of the two types 
of cellular neural networks. Then the following main conclusions result: 

i) Cnoidal modes double periodicity induces differentiable-non-
differentiable Toda pair and hence, by mapping, differentiable-non-
differentiable cellular neural network pair. Pairs components are simultaneously 
generated, are interdependent and are characterized by some parameters such as 
wave number spectrum, phase velocity spectrum and quasi-period spectrum; 

ii) Each of pair’s components presents two functionality regimes, one of 
them being induced by the harmonic waves and harmonic wave packages and 
the other one by solitons and packages of solitons; 

iii) The dispersion equations are obtained for each of the two pair’s 
components; 

iv) Pairs’ coeherence imposes “storage” and “transmission” of 
informations in the form of a specific algebraic language. 

Unlike the electronic calculator which has a hard structure divided by 
artificial algorithms, the spectral component corresponding to the hardware 
particles, has the same artificial behaviour, without having the fractality of the 
natural development. 

As a result, there is no consistency between the cellular network of the 
substance and the spectral undulatory one. The development of the neural 
network is performed according to fractal criteria, the same as for all the other 
parts and systems of the human body. Consequently, the spectrum field created 
by the undulation of the particles of the neural network is consistent, allowing 
the information to be processed inside the neural network and also in the 
spectrum field (Hilbert space), where there are the aspatial and atemporal 
components which enable the memory and also the complex component that 
allows the possibility of multidimensional processing which can explain the 
superior psychic processes, the conceptualization, the semantics, the abstract etc. 

Therefore, at any scale there are the two types of realities that coexist, 
the differential and non-differential, highlighted by the hydrodynamic theory 
and the stochastic one. Another major difference between the electronic 
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calculator and the human brain is done by the analogical feature of psychic 
processing, unlike the digital signal processing. Analog signal processing is 
enhanced by the topology configuration character of the processing, being not 
only a numeric processing but also one determined by the geometric topology. 

The dimensional dynamics, from 0 to infinite, which is realized in our 
reality up to 3 dimensions, can be performed multidimensionally in the complex 
field of psychic reality (through the fractal potential). 

In our opinion the previous mechanisms of the human brain play a 
fundamental role in the growth bacterial process. Once the cellular neural 
network is activated, specific communcation codes are also employed by the 
relevant celles. 

Some implications of cellular neural networks properties in the 
functionality of biological systems are given also in the references (Duceac et 
al., 2015a; Duceac et al., 2015b).  
 Finally, we give an example of how the brain controls, by means of 
specific softwares, the bacterial growth processes. “The genus Mycobacterium is 
best known for its two major pathogenic species, M. tuberculosis and M. leprae, 
the causative agents of two of the world's oldest diseases, tuberculosis and 
leprosy, respectively. M. tuberculosis kills approximately two million people 
each year and is thought to latently infect one-third of the world's population. 
One of the most remarkable features of the nonsporulating M. tuberculosis is its 
ability to remain dormant within an individual for decades before reactivating 
into active tuberculosis. Thus, control of cell division is a critical part of the 
disease. The mycobacterial cell wall has unique characteristics and is 
impermeable to a number of compounds, a feature in part responsible for 
inherent resistance to numerous drugs. The complexity of the cell wall 
represents a challenge to the organism, requiring specialized mechanisms to 
allow cell division to occur. Besides these mycobacterial specializations, all 
bacteria face some common challenges when they divide. First, they must 
maintain their normal architecture during and after cell division. In the case of 
mycobacteria, that means synthesizing the many layers of complex cell wall and 
maintaining their rod shape. Second, they need to coordinate synthesis and 
breakdown of cell wall components to maintain integrity throughout division. 
Finally, they need to regulate cell division in response to environmental stimuli” 
(Hett & Rubin, 2008).  
 Moreover in the same work (Hett & Rubin, 2008) “discuss these 
challenges and the mechanisms that mycobacteria employ to meet them. 
Because these organisms are difficult to study, in many cases we extrapolate 
from information known for gram-negative bacteria or more closely related GC-
rich gram-positive organisms”. 
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REłELE NEURALE CELULARE DIFERENłIABILE ŞI 
 NEDIFERENłIABILE CU IMPLICAłII ÎN PROCESUL DE CREŞTERE A 

BACTERIILOR. PROPRIETĂłI (II) 
 

(Rezumat)  
 

Sunt prezentate proprietăŃi ale reŃelelor celulare neurale (reŃele celulare neurale 
diferenŃiable şi nediferenŃiabile): spectrul numărului de undă, spectrul vitezei de fază, 
spectrul cvasi-perioadei etc. Din această perspectivă sunt precizate condiŃiile pentru 
coerenŃa reŃelelor celulare neurale diferenŃiabile şi nediferenŃiabile, ceea ce poate 
explica nu numai modul în care se stochează şi transmite informaŃia, ci şi modul în care 
pot fi generate codurile de comunicare. Sunt prezentate câteva exemple prin care 
codurile de comunicare intervin în procesele de creştere celulară. 

 


