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Abstract. Our purpose in this paper is to underline the limitations of 

ordinary differential equations of motion for providing dynamical basis for 

complex phenomena which justify our approach of using scale relativity theory.    
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1. Linear Physics 

 
In 1695 Leibniz speculate on the idea of calculating a derivative of 

order 0.5, in response to a request from L'Hospital. However, in physics, such 

things as fractional derivatives, have been left aside in favour of long study 

analytic functions. It was supposed, probably since Galileo, that the physical 

phenomena can be largely represented by analytic functions and dynamics of 

physical phenomena can be represented mathematically by equations of motion 

in which such functions are involved. The truth of this assumption was almost 

confirmed by Sturm-Liouville Theory success in formalizing acoustic or 

electromagnetic phenomena, transmission of heat, diffusion or quantum 

processes. Even when phenomena like phase transitions, turbulence and 

rheology of polymeric materials could not be explained using the approach 
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mentioned above, it is believed that the solution can come from a more detailed 

analysis of the same type. 

 
2. Nonlinear Physics 

 
In the last 45 years, working methodologies in physics have changed, 

abandoning more and more the linear mathematical methods, analytical and 

quantitative (Stoyan, 1979; Benoit, 1982; West and Deering, 1994; Schroeder, 

2009; Meakin, 2011), heading for a combination of nonlinear mathematical 

methods, numerical and quantitative (Meakin, 2011). Not only linear methods 

often have proved inadequate, but even the Euclidean geometry use has not 

always proved adequate. In any case, Newton formulated the mechanical laws 

using geometric arguments, although he had developed earlier the differential 

calculus. Nowhere in “Principia” you will find the famous equation, mF a , 

nor any discussion about derivatives or solving differential equations, but you 

will find used geometry of Euclid and reports of geometric lengths which are 

presumed to converge on finite values when the size of timeframes tends to 

zero. Default felled everywhere in “Principia” is the notion of limit, but 

nowhere is explicitly discussed this concept. Newton's dynamic arguments are 

based on the assumption of an absolute space and absolute time, the dimensions 

are without beginning or end and the continuity is everywhere. The allegations 

of a continuous and infinite time and space, combined with Euclidean geometry, 

almost guarantees the continuity of measurements of derived quantities as 

speed, acceleration and force. 

 
3. Questioning of Differentiability 

 

In the context of modern physics, we learned that the assumptions of 

absolute space and time are no longer valid and the Euclid’s geometry has little 

to do with physical world. In his lessons about the principles of mechanics, 

Ludwig Boltzmann (1974), the father of statistical physics, said “… we have, 

without apology, presented differentiability as an assumption that agrees with 

the experimental facts to date”. 

But this assumption was invalidated in many cases, of which we evoke 

here three: a) the problem of turbulence: in 1926, Richardson (Richardson, 

1926) published his research on irregular fluctuations in the velocity field of 

turbulent wind in the atmosphere; b) Levy Statistics: Levy (Levy, 1925; 

Bologna et al., 2002) has set the most general properties needed by a statistical 

process to violate accepted form, at that time, of the central limit theorem but 

yet to converge to a limit distribution; c) Brownian motion: the dynamic of this 

process, developed by Langevin in 1908 using a stochastic differential equation 

(Levy, 1954) is incompatible with continuous and differentiable nature of the 
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microscopic Hamiltonian dynamics. The differentiability of empirical functions 

of mechanics is something given by the observational tools which are at our 

disposal and so nothing precludes, in fact, the use of non-differentiable 

functions to represent the experimental results. There are at least as many 

differentiable functions as those non-differentiable. An example of such 

functions are fractal functions for which an illustrious example being 

generalized Weierstrass function: 
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which has the derivative: 
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If b > a, the series (2) diverge in an absolute manner when n . 

Note that the function (1) may be either a deterministic fractal function (if the 

phases  n  are zero), or a stochastic fractal function (in the phases  n  are 

random). 

 
4. Central Limit Theorem (CLT) 

 
There is a link between the non-differentiability of microscopic 

processes (Abbott and Wise, 1981), the differentiability of macroscopic 

processes and the CLT conditions. Let we remind that, according to central limit 

theorem, if  1w t ,  2w t , ..., are statistically independent stochastic processes, 

with identically distribution, than the sum variable: 
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is a Gaussian stochastic process. 

CLT applies to dynamical systems that have the time scale of 

microscopic processes much smaller than the time scale for macroscopic 

processes. In this situation of separation between the two time scales, on long 

duration, the memory of details given by microscopic dynamics is lost and we 

can apply a Gaussian statistics on the result at the macroscale. This separation 

of time scales also means that we can use again ordinary differential calculus at 

macroscopic scale, even if microscopic dynamics is incompatible with ordinary 

differential calculus. 



80                                             Irinel Casian Botez  
 

 

 

5. Two Time Scales 

 
Whether the two time scales are different or not, we must resort to 

statistical physics. There are two approaches enshrined in this physics. One is 

the approach of Heisenberg that use dynamic variables. In this approach, in the 

case of the separation between the two time scales, the transition from 

microscopic to macroscopic leads to a stochastic differential equation of 

Langevin type for a macroscopic dynamic variable which corresponds to a 

random process with Gaussian distribution. The second approach uses 

Schrodinger's perspective according to which the time evolution of a Liouville 

density defined in the phase space of the system. The result of this approach is a 

master equation that usually leads to a conventional diffusion equation, which is 

a partial differential equation, of second order in relation to space and first-order 

in relation to time. Therefore, in case of separation of time scales between 

microscopic and macroscopic, the mathematical description remains in the field 

of conventional differentiable analytic functions which describe the dynamics 

(Heisenberg’s approach, centred on particle) or the conventional differential 

operator (second order partial derivatives in Schrodinger’s approach, centred on 

the wave). These two approaches were considered equivalent thought for a 

hundred years, until this equivalence was questionable when different solutions, 

to the same physical problem, have been obtained using these two approaches 

(Bologna et al., 2002). 

When the separation between microscopic time scale and macroscopic 

time scale is not valid, the memory of non-differentiable nature of the 

phenomena at the microscopic level is preserved. Thus, transport equations 

cannot be expressed in terms of ordinary differential calculus, even if our 

observation is macroscopically.  

 
6. Conclusions 

 
Inability of using macroscopically the ordinary differential calculus is 

the explanation why the temporal derivative in Langevin equation is replaced by 

a fractional derivative in relation with time, obtaining a fractional stochastic 

equation. Likewise, Laplace operator of normal diffusion equation is replaced 

by a fractional Laplace operator, yielding a fractional diffusion equation in the 

phase space of the system. We have developed these arguments in (Agop and 

Casian-Botez, 2015; Agop et al. 2015; Casian-Botez and Agop, 2015a; Casian-

Botez and Agop, 2015b; Casian-Botez et al., 2015). 
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PROCESE NEDIFERENȚIABILE 

 

(Rezumat) 

 

Scopul nostru în această lucrare este de a sublinia limitările ecuațiilor 

diferențiale ordinare de mișcare pentru a pune bazele descrierii dinamici fenomenelor 

complexe prin utilizarea teoriei relativității de scară. 


