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Abstract. Dimensionality is one of principal characteristics that define the 

material parameters. The same compound can exhibit dramatic different 

properties depending on whether it is arranger in 1D, 2D or 3D structure. 

Although quasi-1D (e.g. nanotubes), 2D (e.g. grapheme) and, of course, 3D 

physical objects are well documented, dimensionality is conspicuously absent 

among the theoretical approach. We investigate the link between this 

dimensionality and the differentiable approach.  
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1. The Theory 
 

The present day physics, since the time of Newton and Leibniz, the 

founders of the integro-differential calculus, is based on the unjustified 

assumption of the differentiability of the space-time continuum. We say 

“unjustified” because there is neither a priori principle nor definite experiments 

that impose such approach. Moreover, this hypothesis is clearly broken by the 

quantum mechanical behavior. It was demonstrated by Feynman (Feynman and 

Hibbs, 1965) that the typical paths of quantum mechanical particles are 

continuous but non-differentiable.  
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A geometrical intuitive notion of dimension is given by the exponential 

link between object’s bulk and size (a linear distance) (Theiler, 1990): 
 

dimensionbulk ~ size                                             (1) 

  

So, if the space is differentiable, the dimension is a constant, the 

topological dimension of the object, TD . If the space is continuous but non-

differentiable, the dimension is different from the topological dimension:  

 

T Fdimension D D                                         (2) 

 

and the bulk tends to infinity when the size tends to zero, which means, from 

Eq.(1), that dimension is negative: 

 

T FD D                                                 (3) 

 

Mandelbrot named FD  the fractal dimension of the object (Mandelbrot, 

1983). In other words, a non-differentiable space-time continuum is necessarily 

fractal, in the general meaning initially given by Mandelbrot (Mandelbrot, 

1975; Mandelbrot, 1983). 

In such systems implying fractals and non-differentiability, Scale 

Relativity Theory proposes the introducing of a new frame of thought where all 

scales co-exist simultaneously as different worlds, but are connected together 

via scale-differential equations. The quantum behavior may be reinterpreted as a 

manifestation of scale relativity.   

A question is rising: what is the meaning of new differential in respect 

to scale? We must remember that Lobesgue’s theorem (Titchmarsh, 1939) states 

that: a continuous curve of finite length is differentiable or almost everywhere 

differentiable.  

Now let us consider the set of continuous real-valued functions  f s , 

defined on a compact set I  of ℝ. We denote this set by  0C I  and the subset 

of continuous and nowhere differentiable on I  by  0 IC . The variable s , 

proper time, provides the parameterization of the graph,  , of the function 

 f s . The classical way to construct an intrinsic coordinates system on the 

graph   is to introduce the so-called curvilinear coordinate as the length, 

 0f ;s,sL , of the graph   between the points  0 0s , f s    and  s, f s   , 
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where 0s I  is a given origin. If  f s  is non-differentiable, we cannot use 

such construction because we have the converse of the Lebesgue’s theorem: if 

 f s  is everywere non-differentiable then the length of  f s  is infinite.  

In the framework of Scale Relativity Model is introduced a new point of 

view which is that we can have access: 

‒ not to the function  f s , but to a representation of it (controlled by a 

resolution constraint ) 

‒ to the behavior of this representation when this resolution changes.  

This representation of the function  f s  is a one-parameter family of 

real-valued functions, denoted  F s, ,   ∊ ℝ+, which has the properties that;  

a) for all 0  , the function  F s,  is differentiable;  

b)    
0

lim F s, f s





 .  

Such functions are named fractal functions. Fractal function  F s,  is 

a function of two variables, s (in space-time) and   (in scale space). A 

common fractal function is the length,  s,L , of the polygonal approximation 

of the graph   of a non-differentiable function, considered between the points 

 0 0 0A A s , f s     and  B s, f s    .  

This length increases monotonically when the resolution   tends to 

zero. So the length of the graph of a continuous and almost everywhere non-

differentiable function is scale divergent.  

Therefore, this law of divergence, named scale law, was intensively 

studied (LeMehaute, 1991; Tricot, 1999; Cresson, 2002). For example, Cresson 

(Cresson, 2002) defines a scale variable as: 
 

0

E ln




 
  

 
                                                       (4) 

 

where 0   is an absolute resolution described with respect to a given origin 

of resolution 0 . In this scale reference system, we have 0E   for 0  , 

0E  for 0   and 0E  for 0  . 

 The scale law (Cresson, 2002) is given by: 
 

 
 

d s,E
A

dE


L
L  (5) 
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where A : ℝ → ℝ. This law describes a relation between the space reference 

system and the scale reference system. The simplest law corresponds to the first 

degree polynom: 

 

 d s,E
a b

dE
 

L
L                                             (6) 

 

with a,b  are functions of s  in most general case, “a” having the dimension of 

length and “b” being dimensionless. In our approach we shall consider that 

 b s b const.  .  

Eq. (6) is an ordinary differential equation of the first order which have 

the solution: 

 

 
   

 0

bE
a s a s

s,E s e
b b

 
    

 
L L                        (7) 

 

where    0 0s s,L L . Eq. (7) can be rewritten as: 

 

     
 

0
1

b s

s, s s


 




 
  

 
L L  (8) 

 

In this circumstances, let us remember that, following Mandelbrot 

(Mandelbrot, 1983), the length of a fractal curve satisfies (Mandelbrot, 1983), 

page 36, I quote: 

 

  1 DL                                                 (9) 

 

where D  is the fractal dimension which describe the dimensional discordance 

of the fractal sets (in our case the set is the curve). Therefore, if we compare 

Eq. (8) with Eq. (9), we have: 

 

  1Fb s D                                           (10) 

 

So Eq. (7) become: 
 

       
1

0
1 1

FD

s, s s s


 




 
   

 
L L L                   (11) 
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Let  X s,  be one of the representation of the axes, we have: 

 

       
1

0

FD

xX s, x s x s s


 




 
   

 
                          (12) 

 

In the simplest case, we have to restrict to the case of self-similar fractal 

curves which have constant fractal dimension.  

 

2. Conclusions 

 

The main conclusions of this paper is that first consequence of the 

reducing dimensionality is the non-differentiability (fractality) of space-time. In 

such situation we can use a representation of the non-differentiable quantity 

which will depend compulsory of resolution. 
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DIMENSIONALITATE ȘI NON-DIFERENȚIABILITATE 

 

(Rezumat) 

 

Dimensionalitatea este una dintre principalele caracteristici care definesc 

parametrii materialului. Același compus poate prezenta în mod dramatic diferite 

proprietăți, în funcție de faptul dacă este aranjat în structură 1D, 2D sau 3D. Deși 

obiectele cvasi-1D (de ex., Nanotuburile), 2D (de exemplu, grafimele) și, desigur, 

obiectele fizice 3D sunt bine documentate, dimensionalitatea este absentă în mod vizibil 

în abordarea teoretică. Investigăm legătura dintre această dimensionalitate și abordarea 

diferențiată. 
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