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Abstract. In this article we present a generalization of Schrödinger 

equation, which we named fractal Schrödinger equation, and an generalization of 

notion of entanglement: fractal entanglement.   
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1. Introduction 

 
Structures of the nature can be assimilated to complex systems, taking 

into account both their functionality, as well as their structure (Remo Badii 

1997; Mitchell, 2011). The models commonly used to study the dynamics of 

complex systems are based on the assumption, otherwise unjustified, of the 

differentiability of the physical quantities that describe it, such as density, 

momentum, energy etc. - for a mathematical model see (Hou Thomas, 2009; 

Deville and Gatski, 2012) and for some applications, see (Rabinovich and 

Kalman, 2008; Zhang et al., 2009). The success of differentiable models must 

be understood sequentially, i.e. on domains large enough that differentiability 

and integrability are valid. 
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But differential method fails when facing the physical reality, with 

non-differentiable or non-integral physical dynamics, such as instabilities in 

the case of dynamics of complex structures instabilities that can generate 

both chaos and patterns. 

In order to describe such physical dynamics of structures under 

severe plastic deformation, but still remaining tributary to a differential 

hypothesis, it is necessary to introduce, in an explicit manner, the scale 

resolution in the expressions of the physical variables that describe these 

dynamics and, implicitly, in the fundamental equations of “evolution” (for 

example, density, momentum and energy equations). This means that any 

dynamic variable, dependent, in a classical meaning, on both spatial 

coordinates and time (Batchelor, 2000), becomes, in this new context, 

dependent also on the scale resolution. In other words, instead of working 

with a dynamic variable, described through a strictly non-differentiable 

mathematical function, we will just work with different approximations of 

that function, derived through its averaging at different resolution scales. 

Consequently, any dynamic variable acts as the limit of a functions family, 

the function being non-differentiable for a null scale resolution and 

differentiable for a nonzero scale resolution.  

This approach, well adapted for applications in the field of physics, 

where any real determination is conducted at a finite scale resolution, clearly 

implies the development both of a new geometric structure and of a physical 

theory (applied to complex structures) for which the motion laws, invariant to 

spatial and temporal coordinates transformations, are integrated with scale laws, 

invariant at scale transformations. Such a theory that includes the geometric 

structure based on the above presented assumptions was developed in the Scale 

Relativity Theory (Nottale, 2011) and more recently in the Extended Scale 

Relativity Theory (Agop et al., 2015). Both theories define the “fractal physics 

models” class (Nottale 1989; Nottale 2010; Nottale 2011; Naschie et al., 1995). 

In these models the differentiability in the dynamics of complex system is 

replaced by non-differentiability (fractality). Then the motions constrained on 

continuous, but differentiable curves in an Euclidian space are replaced with 

free motions, without any constrains, on fractal curves in a non-differentiable 

(fractal) space. Thus, the motion curves have double identity: trajectories of the 

fractal space and streamlines of a fractal fluid (Agop et al., 2015). In such 

conjecture, for time scale resolution that prove to be large when compared with 

the inverse of the highest Lyapunov exponent (Mandelbrot, 1983), the 

trajectories are replaced by “potential” trajectories, so that the concept of  

“definite positions” is substituted by that of “probability density”. Moreover, the 

complex system structural units (for example, the particles of a fluid) are 

substituted with the trajectories (geodesics) themselves so that any external 

constrains are interpreted as a selection of trajectories (geodesics) by means of 

measuring device. 
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2. Mathematical Model 

 

Supposing that the motions of the structural units of the complex 

systems take place on fractal curves, the following consequences result 

(Nottale, 2011): 

i) Any fractal curve of complex system structural units is explicitly scale 

resolution dependent t . Its length becomes infinity when t  goes to zero; 

We mention that a curve is a fractal if it satisfies the Lebesgue theorem 

(Mandelbrot, 1983), i.e. its length tends to infinity when the scale resolution 

becomes zero. Consequently, in this limit, a fractal curve is self-similar: every 

point reflect, the whole which can be translated into a property of holography 

(Mandelbrot, 1983). 

ii) Through the substitution principle, t  will be identified with dt , 

i.e., t dt   so that, it will be considered as an independent variable.  

iii) The dynamics of the structural units of the complex systems are 

described through fractal variables. Then, these variables are functions 

depending on both the space-time coordinates and the scale resolution since the 

infinitesimal time reflection invariance of any fractal variable is broken. So, in 

any point of the fractal curve, two derivatives of the variable field  ,Q t dt  are 

defined: 
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The “+” sign corresponds to forward physical processes of complex 

system’s structural unit, while the “–” sign correspond to the backwards ones; 

iv) The differential of the spatial coordinate  ,idX t dt  is expressed as 

the sum of the two differentials, i.e.: 

 

     , ,i i id X t dt d x t d t dt    ;                          (2) 

 

The differential part,  id x t , is scale resolution independent, while 

the fractal one,  id t , is scale resolution dependent. 

v) The non-differentiable part of the spatial coordinate satisfies the 

equation (Mandelbrot, 1983): 
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   
1

, FDi id t dt dt           (3) 

 

where 
i  are constant coefficients. By means of these coefficients, the 

fractalization type is specified, while by means of FD  the fractal dimension of 

the motion curves is defined. 

In our opinion, the physical processes characterising both local and 

global properties of the complex systems imply dynamics on geodesics with 

various fractal dimensions. The diversity of the fractal dimensions of the 

geodesics have as a result the assimilation of the complex system with a 

multifractal (Mandelbrot, 1983). In such conjecture, for 2FD  , the complex 

system dynamics are described by quantum type processes. For 2FD   the 

complex system dynamics are described by correlative type processes, while for 

2FD   the complex system dynamics are described by non-correlative type 

processes - for details see (Nottale, 1989; Naschie et al., 1995). 

vi) The infinitesimal time reflection invariance of any fractal variable 

is recovered by summing the derivatives d dt  and d dt  in the non-

differentiable operator (fractal operator): 

 

ˆ 1

2 2

d d d dd i

dt dt dt

       
    

   
                              (4) 

 

This is the result of the Cresson’s prolongation procedure applied to the 

dynamics of the complex system (Cresson, 2006). For example, the non-

differentiable operator to the spatial coordinate yields the complex velocity field 

of the complex system. 

 

ˆ
ˆ

i
i i i

D F

dX
V V V

dt
                                                            (5) 

 

with 

 

1 1
,

2 2

i i i i
i i

D F

d X d X d X d X
V V
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    
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The real part i

DV of the complex velocity field is differentiable and scale 

resolution independent (we shall call it the differentiable velocity field), while 
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the imaginary part of the complex velocity field, i

FV , is non-differentiable and 

scale resolution dependent (we shall call it fractal velocity field); 

vii) An infinite number of geodesics can be found relating any pair of 

points of a fractal manifold in the absence of any external constrain. Then, the 

infinity of geodesics in the bundle, together with their non-differentiability and 

the two values of the derivative (see Eqs. (1)-(3)) imply a description of the 

complex system structural units dynamics by means of a generalized statistical 

fluid dynamics (fractal fluid description). In such conjecture, the average values 

of the fractal variables must be considered in the previously mentioned sense. 

For example, the differential average values of the spatial coordinates is given 

by the relation: 

 
i id X d x                                              (7) 

 

with 
 

0id                                                 (8) 

 

The relation (8) implies that the differential average values of the spatial 

coordinates is null. 

viii) The complex system dynamics can be described through a scale 

covariant derivative, the explicit form of which is obtained as follows. Let us 

consider that the motion fractal curves are immersed in a 3-dimensional space 

and that
iX  are the spatial coordinate of a point on such a curve. We also 

consider the field  ,iQ X t  and its Taylor’s expansion up to the second order: 

 

 
1

,
2

i i l k

t i l kQ X t Qdt QdX QdX dX                       (9) 

 

The functionalities of the relation (9) are valid in any point and more for 

the points 
iX  on the fractal curve which we have selected in (9). In these 

conditions, the forward and backward expressions of the field, Q , from (9) 

become 

 

1

2

i l k

t i l kd Q Qdt Qd X Qd X d X                           (10) 
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We assume that the average values of the all field Q  and its derivatives 

coincide with themselves. Moreover, the differentials id X  and dt  are 

independent. Then, the average of their products coincides with the product of 

averages. Consequently, (10) becomes 
 

1

2

i l k

t i l kd Q Qdt Q d X Q d X d X                     (11) 

 

Even the differential average value of id   is null, for the higher order 

of id   the situation can still be different. Let us focus on the average values of 

the differentials l kd d  
. Using (3) we can write: 

 

 
 2 1FDl k l kd d dt dt   



                               (12) 

 

where we consider that the sign + corresponds to 0dt   and the sign – 

corresponds to 0dt    

In these conditions, (11) takes the form: 
 

 
 2 11 1

2 2

FDi l k l k

t i l k l kd Q Qdt Qd X Qd x d x Q dt dt 


     
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 

       (13) 

 

Multiplying the relation (13) by  
1

dt


 and neglecting the terms that 

contain differential factors we obtain (see the method from (Agop et al., 2015)): 
 

 
 2 11

2

FDi l k

t i l k

d Q
Q v Q dt Q

dt
 


                     (14) 

 

where 
 

                                                         
i iv d x dt    

 

From here, the following operators can be defined: 
 

 
 2 11

2

FDi l k

t i l k

d
v dt

dt
 


                             (15) 

 

Now, taking into account (4), (5) and (15), let us calculate the fractal 

operator d̂ dt . It results: 
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where 

 

,

lk lk lk

lk l k l k lk l k l k
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So, by means of the ralation (16) and (17) we can define the scale 

covariant derivative on the form: 

 

 
 2 1

ˆ 1ˆ
4

FDi lk

t i l k

d
V dt D

dt


                                (18) 

 

Let us now consider the functionality of the following scale covariance 

principle: the physics laws are invariant with respect to scale transformations. In 

these conditions, the passage from the classical physics to the fractal physics 

can be implemented by replacing the time derivative d dt  by the fractal 

operator d̂ dt . For example, applying the operator (18) to the complex velocity 

field (5), in the absence of any external constraint, the geodesics equation take 

the form: 

 

 
 2 1

ˆ ˆ 1ˆ ˆ ˆ ˆ 0
4

F

i
Di l i lk i

t l l k

dV
V V V dt D V

dt


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It results that the acceleration, ˆ i

tV , the convection, ˆ ˆl i

lV V , and the 

dissipation, ˆlk i

l kD V  , make their balance in any point of the motion fractal 

curve. The existence of the complex coefficient of viscosity-type 

 
 2 114 FD lkdt D

 in the dynamics of the complex systems specifies that it is a 

rheological medium. So, it has memory.  

For fractalisation by Markov type stochastic processes (Mandelbrot, 

1983; Nottale, 2010), we have: 

 

2i l i l il                                             (20) 

 

where 
il  is the Kronecker’s pseudo-tensor. 
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Under these conditions, the geodesics equation takes the simple form: 

 

 
 2 1

ˆ ˆ
ˆ ˆ ˆ ˆ 0F

i
Di l i l i

t l l

dV
V V V i dt V

dt



         , 1,2,3i                (21) 

 

or in vectorial form: 

 

   
 2 1

ˆ ˆ
ˆ ˆ ˆ ˆ 0FD

t

d
i dt

dt



      

V
V V V V                 (22) 

 

If the motion of the structural units in complex system is supposed 

irrotational, i.e. ˆ V 0 , we can choose V̂  of the form: 

 

ˆ V                                                    (23) 

 

where   is a complex velocity potential. Moreover, choosing this potential in 

the form: 

 

 
 2 1

lnFD
i dt  


                                    (24) 

 

and substituting it in (22), it results: 

 

 
 2 1

0FD

tdt i  

      (25) 

 

up to an arbitrary phase factor which may be set to zero by a suitable choice of 

the phase of   (see details in (Agop et al., 2015)). 

For motions of the structural units of complex system on Peano’s 

curves, 2FD  , and at Compton scale, 02m   , with   the reduced 

Planck constant, 2h  , and 0m the rest mass of the entities of complex 

system,  the relation (25) becomes the standard Schrödinger equation:  

 

0

0
2

i
m t





  




                                       (26) 

 

We conclude, in this stage, that the standard Schrödinger Eq. (26) is a 

particular case of a more general case represented by the Eq. (25), named in this 

paper fractal Schrödinger equation. 
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3. Entanglement 

 

In 1935 Einstein, in a famous article (Einstein et al., 1935), proceeds 

from the principle that in a complete theory there must be an element that 

corresponds to each element of reality and demonstrates that in quantum 

mechanics the description of reality by its Schrödinger wave function is not 

complete. 

In the same year, in another article, Schrödinger (Schrödinger, 1935) 

argues that starting from the same wave function interpretation which express 

the probability relationship between two separate daughter systems, we can 

introduce the notion of entanglement. By this, Schrödinger understands a new 

quantum state for each of the two systems, acquired by these once they were in 

contact. This new state of each system is maintained even after the two systems 

have been separated in space as much as possible. It has the character like that 

two states are twin, the modification of the state of one instantly causing the 

alteration of the state of the other, without being involved any energy transfer. 

In 1952, Bohm (Bohm 1952a; Bohm 1952b) interprets this special 

quantum state as the expression of a hidden quantum variable, but in 1966, Bell 

(Bell, 1966) demonstrates that the existence of the hidden variable is 

impossible, and that it is only a new type of quantum state which have to be 

considered. The existence of this special quantum state can be demonstrated by 

checking some inequalities. 

In 1993, Bennett (Bennett et al., 1993) shows that this kind of quantum 

state, the entanglement, can be used as an intrinsic encryption method of 

quantum information (information encoded using the quantum bits - qbits). 

 

4. Conclusions 

 

Taking into account the conclusion of paragraph 3 and the 

considerations in paragraph 4, we conclude that: 

i) The existence of a fractal Schrödinger's equation, whose solution is 

the fractal wave function, allows us to introduce the generalizing notion of 

fractal entanglement. 

ii) Fractal Entanglement is an intrinsic method of encrypting 

information transmitted by fractal bits. 
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ENTANGLEMENT FRATAL 

 

(Rezumat) 

 

În acest articol prezentăm o generalizare a ecuației lui Schrödinger, pe care am 

numit-o ecuația fractală a lui Schrödinger, și o generalizare a noțiunii de entanglement: 

entanglement fractal. 


