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Abstract. The astrophysics literature tries to make a case for the existence 

of a supermassive black hole at the center of Milky Way, in the location of the 
radio source Sagittarius A*. We think that, with arguments of the very same 
nature, the evidence points quite to the contrary. Thus, while the observational 
data on the orbits of the starry objects around Sagittarius A*, being of a 
projective character, are entirely reliable, their physical explanation uses quite a 
particular type of Newtonian forces, namely those with magnitude depending 
exclusively on the distance between bodies. To begin with, this limitation 
assumes a priori that the bodies connected by such forces are special material 
points, viz. space positions endowed with mass. At space scales such as that of 
the galactic center region in discussion, this assumption is not realistic, and 
therefore, implicitly, such particular forces are themselves not quite realistic. 
Still using Newtonian forces in argument, one should allow, on such an occasion, 
their full generality. This means that we only need to assume that they are central 
forces with no other further constraints. Within the framework of the Newtonian 
theory of forces this freedom has important theoretical consequences discussed 
in the present work. Among these the chief one, from astrophysical point of 
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view, is that the presence of a supermassive black hole in the center of Milky 
Way might not be a sustainable assumption. An alternative is presented. 

 

Keywords: Sagittarius A*; Milky Way; central forces; Newtonian theory 
of forces; electromagnetic field; production of field; astrophysics; fundamental 
physics. 

 
1. Introduction 

 
We note that a previous version of this work was uploaded to the online 

free access database viXra.org (Mazilu, 2012). 
The story starts with the discovery of the galactic radiosource called 

Sagittarius A* in the center of the Milky Way (Balick and Brown, 1974). The 
scientific consensus is that, physically, such a source should be correlated with 
the existence of a material body in that place. For, the fundamental physical 
notion is that the electromagnetic field is only created by the motion of matter. 
However, such a body is optically invisible at that position. And as, according 
to fundamental physical understanding, one cannot presume that the center of a 
spiral galaxy is simply an empty location emitting electromagnetic radiation, the 
astronomers got quite a mystery in their hands. 
 Then, later on, the adaptative optics stepped down from the military to 
scientific uses, and starting from about the beginning of the last decade of the 
previous century, it allowed to astrophysicists distinguishing starry isolated 
objects moving against the background of the center of the Milky Way. It was 
thus possible to notice coherent patterns in the motion paths of such stars, as 
projected on the canopy (for an outstanding review of the history, evidence and 
elimination of the many alternative physical explanations see (Reid, 2009) and 
the original literature cited there). One such object, called S02, even completed 
an elliptic path, under our eyes so to speak, in about 16 years, proving beyond 
any doubt that its motion is Keplerian. Further analysis revealed many such 
gravitating stars, whose paths are only partially accessible though. Nevertheless 
their observed positions are enough for allowing astrophysicists to infer that 
their complete orbits are ellipses. 
 The common feature of all these orbits is that they all contain the 
radiosource Sagittarius A* in one of their foci, therefore they should be 
Keplerian orbits, or at least very close to these. And as this source is dim in any 
kind of perturbations that can reach the Earth, one can easily suspect that not all 
radiation comes out from the source. First, the object is invisible. Therefore the 
optical part of the spectrum does not reach the Earth, and this can have a 
rational explanation: it is swallowed by the matter existing between the center 
of the Milky Way and the solar system. This seems only reasonable, inasmuch 
as the matter between the center of galaxy and the solar system dims the light 
by some 30 orders of magnitude. In other regions of spectrum we are luckier: 
infrared and radio waves are dimmed only by about three orders of magnitude. 
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However, there is still a big discrepancy between the mass to be assigned to the 
body assumed to create the gravitational field responsible for the motions of 
those stars and the amount of radiation we are supposed to receive from such a 
body. This fact helped gradually built the conclusion that the central body 
works in the way in which a black hole is supposed to work. For, if one applies 
the Newtonian theory of forces in a classical way (see for instance (Gillessen, 
2009)), the mass of an object that fits the requirement of being the source of 
such a gravitational field is about four million and a half solar masses: a 
supermassive black hole! 
 Recently, a new finding, seems to support the idea of a massive black 
hole in the center of Milky Way: 

“Recently, we discovered a peculiar molecular cloud, CO–0.40–0.22, 
with an extremely broad velocity width, near the centre of our Milky Way 
galaxy. Based on the careful analysis of gas kinematics, we concluded that a 
compact object with a mass of about 105M⊙ is lurking in this cloud. Here we 
report the detection of a point-like continuum source as well as a compact gas 
clump near the centre of CO–0.40–0.22. This point-like continuum source (CO–
0.40–0.22*) has a wide-band spectrum consistent with 1/500 of the Galactic 
SMBH (Sgr A*) in luminosity. Numerical simulations around a point-like 
massive object reproduce the kinematics of dense molecular gas well, which 
suggests that CO–0.40–0.22* is one of the most promising candidates for an 
intermediate-mass black hole” (Oka et al., 2017). 

As seen in the paragraph above, this new data was interpreted using 
numerical simulations based on the same classical assumptions as the ones 
before it (Reid, 2009). 

 It is our opinion that the very theory of forces used to disentangle such a 
case is not completely adequate to the task, so the conclusion of the existence of 
a black hole in the center of Milky Way, or in the center of any other galaxy for 
that matter, might not be the appropriate one. In fact the observational data may 
be pointing out to the necessity of approaching the physics of the center of 
Milky Way with the ingenuity with which Newton himself approached its 
prototype, the Keplerian synthesis of planets’ motion. Thus, while we agree 
entirely with the statement that the Milky Way’s center is “a laboratory for 
fundamental astrophysics and galactic nuclei” (Ghez et al., 2005), we think a 
little further, namely of ‘a laboratory for fundamental physics’ at large. For, the 
data itself may compel us to change the ideas about the fundamental forces as 
we claim to know them today, by looking deeper into their history and 
considering it face value. 

 Indeed, we are, here and now, in that unique situation in which the 
science was only once in its history. That was in the times when Newton, 
having at his disposal the Keplerian synthesis of Tycho Brahe’s data on Mars, 
has invented the forces of which the physicists and astronomers speak today. 
Thus, on one hand, we have at our disposal the outstanding synthesis, allowed 
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by the adaptative optics, of the motions of the stars in the very central part of 
our galaxy (see (Ghez et al., 2005; Eckart et al., 2002) and the earlier original 
works cited there). Like the old Kepler synthesis, the new synthesis points out 
to coherent motions, of stars this time, which projected on the canopy appear as 
elliptical motions. Therefore, in reality they cannot be but Keplerian motions, 
no matter of the orientation of their planes in space. Being based on projections 
on the canopy, the conclusion is by no means affected by the uncertainty in the 
galactic metric parameters (for a recent critical study of such uncertainties see 
for instance (McMillan and Binney, 2010)). It is therefore the most reliable 
conclusion one can draw based on observations. Now, when the orientation of 
those planes of motion is taken into consideration in extracting the orbits from 
the data, all these orbits reveal that Sagittarius A* is in one of their foci, just 
like the Sun in the Kepler’s case. But unlike the planets of the solar system, the 
stars orbiting around Sagittarius A* are not in the same plane. All we can say is 
that as conic sections they belong to a family of quadrics having a common 
focus. This fact may, by itself, indicate that the case of the black hole is 
unsustainable. 

 For, on the other hand, the usual physical explanation of this 
observational synthesis stops at some quite particular class of forces that might 
not be appropriate to the task. These forces are assumed to be well known, 
being of the type which Newton used in order to explain the ideal Kepler 
motions, amended, on occasions, to account for the almost insignificant 
rotations of the orbits. In fact, with rare exceptions, the whole speculative 
physics today uses only such forces, distinguished by the fact that they are 
conservative and have the magnitude depending exclusively on the distance 
between the attracted and the attracting bodies. Provided, of course, these 
bodies can be considered material points in the classical sense, i.e. space 
positions endowed with physical properties (mass, charge etc.). 

 So, regarding the main physical argument used in explaining the 
observational data – the forces – we think that it calls for a more careful 
consideration. Specifically, we should go way deeper with the assumptions 
about the forces responsible for the contemporary Kepler motions in the center 
of Milky Way, at least as deep as Newton went in the prototypical case of the 
original Kepler motion. It appears therefore as only appropriate to start our 
present undertaking with the essentials of Newton’s approach of his invention 
of central forces (see (Newton, 1995) Book I, Sections II & III). 
 

2. The Newtonian Forces 
 

In order to make our message more clear, let us rephrase the Corollary 3 
of the Proposition VII from Principia, with reference to an arbitrary orbit, not 
just a Keplerian one. This confers maximum generality to the concept of 
Newtonian force and to its quantitative definition, pointing out the particular 
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situation of the mass itself in the construction of force. This corollary is, in our 
opinion, the key of understanding the action of all forces in the universe. In a 
simplified expression, extracted from Newton’s original (Newton, 1995, p. 48), 
and adapted for our specific needs, it sounds like: 

The force by which a body P … revolves about a center of force S, is to 
the force by which the same body may revolve in the same orbit, and the same 
periodic time, about another center of force R, as the volume SP×RP2, … to the 
cube of the straight segment SG, drawn from the first center of force S, parallel 
to the distance RP of the body from the second center of force R, and meeting 
the tangent PG of the orbit in G. One can easily draw a figure in order to better 
assess the geometrical situation. The points S and R can occupy any positions 
with respect to the observed orbit in its plane. 

To our knowledge, J.W.L. Glaisher appears to be the first one who 
properly put this statement into an analytical form, with no recourse whatsoever 
to dynamical principles, and with reference to the eliptic, therefore closer to 
Keplerian, form of the orbit (Glaisher, 1878). The theory goes, by and large, 
along the following lines. Assume that, in the Cartesian coordinates of the plane 
of motion, the equation of the observed orbit is the quadratic non-homogeneous 
equation 

2 2
11 12 22 13 23 33( , ) 2 2 2 0f x y a x a xy a y a x a y a≡ + + + + + =        (1) 

 
Then the relation between the two forces expressed in the statement 

above can be translated into equation: 
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Here ξ


 the vector of components 
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and SRξ ≡




. r


 denotes here the position vector of the moving point P with 
respect to S, and r is its magnitude – i.e. what we call here the distance, when 
not otherwise specified. 

Eq. (2) shows how to calculate analytically the force in P toward point S, 
when we happen to know the force in P toward the point R from the plane of 
motion. This is the basic mathematical principle of the Newtonian natural 
philosophy. It is not hard to see that it extends… naturally the observations 
related to the ‘working principle’ of a sling shooting, whereby the force of gravity 
– i.e. the weight – acting vertically, is actually ‘compared’, by means of the sling 
itself, with the centrifugal force, acting horizontally or in any other direction. 
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 Now, the force toward R can be taken as reference in measuring the 
force in the current point P of the orbit in any other direction. So, in this case, 
we are sort of compelled, so to speak, to a choice of R that makes the theory of 
forces universal, at least in the Keplerian situations. This leads within modern 
theoretical physical views, to a calibration of Newtonian forces. In the cases 
where R occupies the position of the center of the orbit, Newton has inductively 
shown that the force toward it, is directly proportional with the distance 
between R and P, i.e. with the distance from the center to the orbiting point. If 
we use this result in Eq. (2), then the force we need to know is 

 
3FORCE toward (1 )S rµ ξ ε= ⋅ ⋅ + ⋅



             (4) 
 
where µ  is a constant of proportionality, coming from the force toward the 

center of orbit. If, further on, we use the components (3) of the vector ξ


, we get: 
 

2
33 3

13 23 33

FORCE toward 
( )

rS a
a x a y a

µ= ⋅ ⋅
+ +                  

(5) 

 
in the reference frame where S is in origin. This result can be, of course, 
expressed in different manners, depending on the way of writing the equation of 
the conic representing the orbit. However, it carries an even more important 
message, at least from a geometrical point of view. 

 With the substantial help of the analytical geometry of conics, in words 
the result sounds: the force toward a certain center by means of which a certain 
material point describes a conical orbit around that center, is directly 
proportional to the distance from the point to the center of force and inversely 
proportional with the third power of the distance from the point to the straight 
line conjugated to the center of force with respect to the orbit. This is a theorem 
first given by W.R. Hamilton (Hamilton, 1847) on the “occasion of a study of 
Principia.” Therefore, once again, the center of force can occupy any position 
with respect to the orbit, but in the case of conical orbits, and with a standard 
choice of the reference force, i.e. in a standard calibration or gauging of the 
forces, the definition of Newtonian force involves the very same elements as the 
definition of the orbit itself: the distances of the generic point of orbit from the 
center of force and from the polar line coresponding to that center of force. 

 This fact should be more obvious if we write the equation of force in 
the form: 

3 2
1 1 1 2 2 2

( , )
[( )( )]

rf x y
a x b y c a x b y c

µ
=

+ + + +
  (6) 

 
Here the equation of the orbit is understood in the form 
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2
1 1 1 2 2 2 13 23 33( )( ) ( ) 0a x b y c a x b y c a x a y a+ + + + − + + =  (7) 

 
It expresses the fact that, geometrically, the orbit is determined by its 

tangent lines – real or imaginary – in the two points where the straight line polar 
to the center of force with respect to the orbit cuts it. The tangents are 
considered as having the equations: 

 

1 1 1 2 2 20; 0a x b y c a x b y c+ + = + + =            (8) 
 
while the polar itself of the center of force with respect to the orbit is taken as 
given by equation 
 

13 23 33 0a x a y a+ + =             (9) 
 
Now, based on this general presentation, let’s see where the limitation 

to the dependence of the magnitude of force exclusively on the distance enters 
the physics of gravitating systems. For, one can see from Eq. (6) that, in 
general, such a behavior of the magnitude of force is far from being the general 
case. Rather, the magnitude of the Newtonian force as we read it even in conical 
orbits, with no further specification of the position of the actual center of force, 
depends also on the current direction of the orbiting body. 

 The very idea of force in explaining celestial harmony started from the 
first of the Kepler laws: the planets describe elliptical orbits with the Sun in one 
of their foci. This last information is crucial. For, if the position of the center of 
force is in a focus of the ellipse, then the magnitude of force cannot depend but 
on the distance, and that even in a very special way. Indeed, we can then use the 
equation of the orbit referred explicitly to one of its foci. By the definition of a 
conic section, the ratio between the distances from the planet to one of the foci 
and from the planet to the corresponding directrix (the polar of focus) is 
constant: the eccentricity. This comes down analytically to the equation 

 
2 2 2

13 23 33( )r e a x a y a= ⋅ + +             (10) 
 
where e is a number proportional to the eccentricity of the orbit. In this case, 
using the Eq. (7), Eq. (6) leads directly to: 
 

2( , )f x y
r
µ

=       (11) 

 
with µ  – a constant. This is the force of ‘universal gravitation’ to which the 
classical physics makes always reference, with no mention though of the 
prerequisites of its expression: that the point of attraction and the point attracted 
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have to be only… points, and furthermore, the point of attraction has to occupy 
a privileged position with respect to orbit – that of one of its foci. For, if the 
point of attraction occupies any other position in the plane of motion, with rare 
exceptions, we may be in the situation that the magnitude of force depends also 
on the direction from the center of force to the moving body. Thus the 
universally used Newtonian force of gravity is actually quite a particular choice 
among the possible forces responsible for the Kepler synthesis. 

 Let’s therefore see what other cases may occur of dependence of the 
magnitude of Newtonian forces only on distance. Indeed, the motion of planets 
is not the only one given to our experience, although we have to recognize that 
it is the one that stirred up everything. Thus, for instance, the immediate 
experience has certainly to do with with elastic forces too. These are the forces 
that ‘gauge’ – and that in a quite precise manner we should say (see (Mazilu and 
Agop, 2012)) – all the modern positive science, insofar as it needs to be 
submitted to experimental verification. And such forces are obtained, within the 
Newtonian program sketched above, in cases where the center of force 
coincides with the center of the orbit. In Eq. (7) this means 13 23 0a a= = , and 
therefore Eq. (6) becomes: 

 

( , )f x y rµ= ⋅     (12) 
 
where µ  is another constant, not necessarily that from Eq. (11). This might 
seem as a tautology – we started specifically from the idea that the force toward 
the center of the orbit is an elastic one – but, at a closer scrutiny we might have 
to change this opinion. First of all, Eq. (12) shows that the theory is not self-
contradicting, and this is an important fact by itself. Secondly, this shows that 
the Newtonian formula works for the same point in the plane of orbit in two 
different instances – as material point and empty position – and this is most 
important conclusion for theoretical physics. 

 
3. The Concept of Field and the Modern Idea of Gauging 

 
Indeed, this is the very essence of the idea of field in physics. For a 

better understanding, consider the situation of light. What we usually accept is 
that the Newtonian force is proportional to distance in the cases where the 
center of force is material and located in the center of the orbit. What about the 
cases when that center of force is simply an empty position? This is plainly the 
case of the Fresnel ellipse in the plane waves of light, perpendicular to the light 
ray: there is no material center of force on the light ray, and yet the light can be 
described as if there is one there. This fact reveals the real merit of the 
Newton’s definition of the force: it can be calculated with respect to any point, 
once the geometric setup is Keplerian! The force has indeed the characteristics 
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of a true field, as these came down to us from the theoretical physics of the 19th 
century. This would mean, for instance, that in the case of a light ray there is 
always a Newtonian central force acting along the ray, toward or away from the 
source of light. The idea was always rejected from the realm of physics, based 
exclusively on the fact that the force should be a vector, for which the formulas 
like (11) and (12) give the magnitude unconditionally. As Glaisher’s analysis 
clearly shows, this was not at all the case when Newton has invented the forces. 

 Regarding the light phenomenon per se, this philosophy was 
materialized even from the times of Fresnel, by the ‘gauging’ proposal of James 
Mac Cullagh (Mac Cullagh, 1831) for the representation of the light according 
to Newtonian view of forces. Let us briefly see what Mac Cullagh’s point of 
view is about. He was concerned with the elliptically polarized light, like the 
light passing through rock crystals. He found that this light can be represented 
by two harmonic vector processes in the same plane, like the processes invented 
by Fresnel to help explaining the light phenomenon, making a certain angle 
between them. Later on (Mac Cullagh, 1836) he noticed that the theory can be 
put in a space-time form by a system of coupled differential equations, which 
led him to the foundations of a theory of ether (Mac Cullagh, 1839) – improved 
afterwards by Lord Kelvin and Joseph Larmor – and finally to an exquisite 
explanation of the phenomenon of double refraction in quartz (Mac Cullagh, 
1840). It is to be noticed that the veiled persuading argument of Mac Cullagh’s 
feat seems to have been the faulty notion of describing the light by a 
displacement, advanced initially by Fresnel. Indeed, in the case of light – a 
continuum phenomenon – the mechanical displacement has no object, i.e. it is 
not referring to a material point, but simply to an empty position in space, for no 
matter as we know it is located there. This very fact made Newton’s natural 
philosophy hardly relevant to the light, a detail corrected, as we see, in a 
brilliant way by Mac Cullagh. These observations explain, by and large, the 
almost explicit contribution of Mac Cullagh to the future electromagnetic theory 
of light (Darrigol, 2002; Darrigol, 2010). In hindsight though, Mac Cullagh’s 
seems to us to be much more than an electromagnetic theory. It should be taken, 
indeed, as the very first specimen of a gauge theory (see 10 for a discussion of 
light in ‘Mac Cullagh’s gauge’) of the kind that came into existence more than a 
century afterwards, in the form of the Yang-Mills theory (Yang and Mills, 1954). 

 Returning, for one last consideration, back to the Eqs. (11) and (12), 
they reveal forces whose magnitude is exclusively dependent only on the 
distance between the points assumed to be physically correlated by them. These 
happen also to be the only forces that satisfy the Kepler geometry per se, i.e. the 
only ones having closed orbits (Bertrand, 1873). But one can see from these 
examples that the dependence of the magnitude of force exclusively on distance 
is acquired, first of all, by the special position of the center of force with respect 
to the orbit. Secondly, and by no means less important, is the fact that the 
universal ‘comparison force’ as it were, the gauging force of the Newtonian 
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procedure, is the elastic force, which may or may not be actual after all, when 
referred to criteria dictated by our senses, depending on the circumstance that 
the center of orbit contains matter or not. And any other comparison force than 
the elastic isotropic one, used in the Newtonian procedure of defining forces, 
would make the formula (6) more complicated, perhaps even prohibitively. This 
moment in the definition of force in the Newtonian philosophy turns out to have 
universal significance even through the modern idea of ‘gauging’ from 
theoretical physics. From this perspective it shows even more: nothing can be 
reproducibly described in physics, unless we have a gauge for it. 

 Nevertheless, it turns out that the Eqs. (11) and (12) are used nowadays 
in theoretical physics with no reference to their Newtonian foundation, and 
therefore with no further qualifications about their very possibility at that. For 
instance there are times, and very often at that, when the force from Eq. (11) is 
considered a static force. This should entail special considerations, because 
originally the very existence of such force carries a precise identity: it is clearly 
related to a Keplerian motion, and moreover, the value (11) is referred to a 
gauging elastic isotropic force that might not even be actual. In hindsight 
though, judging by the success of such universal ‘anonymous’ forces in the 
history of physics, specifically in the theory of light and astrophysics, there 
seem to be no need at all for the existence of matter in the center of the conic, in 
order to ratify their reality. If one needs a ratification anyway, this comes 
simply from the fact that the elastic forces are an expression of the existence of 
a privileged coordinate system – that of harmonic coordinates (Mazilu and 
Agop, 2012). 

 In the case of those two time-honored central forces with magnitude 
depending exclusively on distance, we have as centers of force the very center 
of the orbit and its focus. But these are by no means singular cases leading to a 
force with magnitude depending exclusively on distance. If, for instance, the 
motion is elliptic and the center of force is located on the orbit itself, the 
magnitude of the force accounting for this motion is inversely proportional with 
the fifth power of the distance. By the same token, if the orbit is of a special 
shape – other than a conic section – we may also have forces exclusively 
depending on distance. This is, for example, the case when the motion has the 
space form of a logarithmic spiral, like the arms of a galaxy. The force accounting 
for such a motion pulls toward the pole of the spiral with a magnitude inversely 
proportional with the third power of the distance from that center. 

 The case presented by Sagittarius A* is outstanding mostly from a 
special point of view of natural philosophy, that may induce us to reconsider the 
previous old natural philosophy founded by Newton. As we have already 
mentioned above, the only criterion that validates the decision that a body is 
acted upon by a force pulling towards a certain point in space is the perceived 
matter in that point. This can be actually quoted as the first gauging criterion of 
physics. It turns out to work even today in full swing. According to this 
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criterion, Sagittarius A* should be such a point, even though only ‘partially 
perceived’ as it were. However, it does not satisfy itself to another criterion that 
historically became essential, but actually it turned out to be quite arbitrary: that 
of mass. In order to define this criterion, and to recognize its true meaning, let’s 
follow the evolution of Newtonian ideas along the theory of continuum 
material, leading to Poisson’s equation. This is actually the route which led to 
the modern theoretical physics’ idea of gauging in the first place. 

 
4. The Mass and the Newtonian Theory of Forces 

 
Perhaps we would have never talked about the whole theoretical physics 

as it is today, if Newton would not have insisted on the idea that the force of 
gravity should be directly proportional with the ‘quantities of matter’ of the 
bodies involved in the interaction represented by that force. More precisely, in 
modern vector notation, the Newtonian force created by a body of mass M on a 
body of mass m, can be written as 

 

2( ) Mm rf r G
r r

= −




          (13) 

 
Here G is the so-called gravitational constant, and r  is the position 

vector of m with respect to M, again, both considered as material points. Now 
this force can be thought of as existing by itself, separated from its roots as it 
were, i.e. disregarding its Keplerian origin. As we have mentioned before, it can 
even be considered a static force. The physical problem now moves on to the 
realm of mechanics: can this force explain the observed motions? and how? The 
answer is well known, and resides in the principles of dynamics, put forward by 
Newton in order to be able to profitably use the force. This time though, the 
force is assumed to be the independent cause of the motion. 

 Our way of writing the force here points to the fact that the force is 
attractive, being opposite to the orientation of the position vector. Its magnitude 
does not depend but on the distance between the two material points assumed to 
be correlated by force, and this in a very special way, shown above in Eq. (11) 
as specific to a Keplerian setting involving an elliptical orbit with the center of 
force in one of its foci: 

2( ) Mmf r G
r

=


      (14) 

 
Therefore  GMµ ≡ in formula (11) above. 
 Newton insisted at length on the fact that the force of gravitation should 

be proportional with the quantities of matter of both bodies involved in the 
interaction represented by force, otherwise nothing would make sense. This is a 
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rather arbitrary assumption by itself (for the only critical approach of the issue, 
at least as far as we can judge, see (Poincaré, 1897; Poincaré, 1921)). It was 
like Newton was mindful of the fact that, some two hundred years after him, the 
general relativity would have to come into existence, and he ought to create its 
possibility. However, he was apparently guided in his insistence only by the fact 
that a force like that from Eq. (14) is able to offer physical support to the 
marvelous synthesis by Kepler of the motion of the planet Mars. 

 Indeed, in modern terms, in order to obtain the Kepler laws it is 
sufficient to solve the Newtonian equations of motion written in the form 

 

2 0K rr
r r

+ =






     (15) 

 
as one proceeds routinely today. Here  K GM≡ , and so it is obvious that the 
description of motion by this equation is universal even in the more precise 
sense that it does not depend on the mass of the moving body. So, if the 
independence of the force (13) of its physical origin could still be counted as an 
arbitrary assumption, the undeniable success of the mathematics handling of Eq. 
(15) bestows upon it an equally incontestable actuality. For, this is the first 
moment where the idea of field, independent of matter, came up to science. 

 The Newtonian force from Eq. (13) is conservative, i.e. can be derived 
from a potential. The existence of a potential in the problem of classical 
gravitational field means however more than the mere law of conservation of 
the mechanical energy. It also opens the path of speculations regarding the 
structure of matter and of the characterization of a continuum from mechanical 
point of view, as initiated by Newton himself. In order to show this, let us 
notice that we can write the Newtonian force in the form 

 

1 1( ) ( ); ( ) GMf r m V r V r
r

= ∇ ≡


                       (16) 

 
where ∇  is the operation of gradient and 1V is the potential energy. Considering 
only the force per unit mass, the force from Eq. (16) is: 
 

1( ) ( )f r V r= ∇


     (17) 
 
This force is therefore an intensity, characteristic of the space around 

the mass assumed to exert that force. It is this space, thus physically 
characterized, that came to be known as a field: the gravitational field. The 
force exists in every point of space, no matter of the other physical properties of 
that point: it can be simply a position in space, as well as the location of a 
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material particle. Therefore the force is a continuous vector function of the 
position in space, and can very well be a characteristic of a material continuum 
filling the space. Which characteristic was not so long in coming to physical 
considerations, being, as it were, a necessity forced upon the mathematics of 
natural philosophy by the space expansion of material bodies. 

Indeed, inasmuch as one can think of a physical structure of a material 
continuum, this gives us the right to calculate the flux of force around a certain 
point in space. Considering the force from Eq. (13) as a static force, we can use 
a spherical surface around origin of coordinates. If we calculate its flux through 
a spherical surface of radius r according to the usual formula 

 
ˆ ( )

Sphere
n f r dA⋅∫∫






   (18) 

 
where n̂  is the unit normal to the sphere and dA  is its elementary area, we get 
an interesting result. As the unit normal vector to the sphere is just the versor of 
the position vector, and 2 sindA r d dθ θ ϕ= , we have 
 

ˆ ( ) 4
Sphere

n f r dA GMπ⋅ =∫∫






         (19) 

 
Therefore the flux of force of the gravitational field is, up to a universal 

factor, the mass of the material point creating the field – appropriately called the 
source of field. Now, the mass of that source can be represented, according to 
Newton’s definition of the density of matter (Newton, 1995, p. 9), by a volume 
integral: 

 
3( )

Volume
M r d rρ= ∫∫∫

             (20) 

 
where ()ρ denotes the Newtonian density at the chosen location and 3d r  is the 
volume element at the same location. Using the Eqs. (17), (19) and (20) we get 
 

3
1ˆ ( ) 4 ( )

Sphere Volume
n V r dA G r d rπ ρ⋅∇ =∫∫ ∫∫∫

  



          (21) 

 
where the ‘Volume’ is that of the corresponding ‘Sphere’. Further on, using 
Gauss’ theorem for the left hand side of this equation, we have 
 

{ }2 3
1( ) 4 ( ) 0

Volume
V r G r d rπ ρ∇ + =∫∫∫
  

                  (22) 
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In fairly general continuity conditions, the integrand of this equation 
should then be zero. This gives us the Poisson’s equation, relating the 
Newtonian density of matter that generates the field to the field potential. 
Usually, the potential is taken without the gravitational constant, which comes 
to a simple redefinition: 1V GV= . So, the equation of Poisson becomes the one 
we usually write today:  

 
2 ( ) 4 ( )V r rπρ∇ = −
 

             (23) 
 
This is the equation which, from the perspective of general relativity for 

instance, is the fundamental equation of the classical mechanics. It is not usually 
considered quite by itself, but in conjunction with the implicit idea that we are 
always able to know the density of matter. It is therefore an equation giving us 
forces, when knowing that we have at our disposal the matter creating, as it 
were, these forces, provided that one can characterize this matter by a density in 
the Newtonian recognition. More than this, it contains, in the background at 
least, the idea that the material point of Newton is not simply a position in 
space, as actually the rigorous calculation requires: it should be endowed with a 
space expanse to be occasionally considered. It is in this general acceptance that 
the equation is used in characterizing the Sagittarius A* case. 

 Now, obviously, by Eq. (20), and therefore by Eq. (23), we actually 
describe the part of space inside the matter. Then, the Poisson’s equation itself 
becomes part of fundamental physics. Indeed, it is really necessary in the 
description of nature, inasmuch as it provides us knowledge on the space inside 
matter. The hard part of the problem is that the Newtonian density is only a 
hypothesis, and quite unreliable at that, because the matter is not inherently 
homogeneous with respect to space, and we do not have access to its space 
details – at least not always. Nevertheless, within certain quite natural 
assumptions, that knowledge is inferrable, as it was actually the case all along 
the time. The most reliable, and the only one entirely realistic we should say, of 
these assumptions is offered by the particular case of the Poisson’s equation, 
where the density of matter is zero, viz. the Laplace equation. Indeed, the 
Newtonian potential of the force from Eq. (13) above is actually a solution of 
Laplace equation, thus characterizing the situation in vacuum. And this fact is 
quite natural: the Newtonian force has not been invented otherwise, but 
specifically for describing the interaction between material points in vacuum. It 
is only its extension to the space inside matter – allowed by the equation of 
Poisson, which in turn was allowed by the special assumption of Newton on the 
position of masses in the expression of the magnitude of force – that creates the 
impression that the force depends physically on the density of matter. This line 
of thought was initiated indeed by Poisson in 1812, and put on mathematical 
firm grounds by Gauss in 1839 (see (Gauss, 1842)). It is along it, that Einstein 
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found flaws to classical physics, and thus pressed forward the ideas that led to 
the general relativity. A brief history of the main points of development of the 
theory is perhaps in order. 

 In 1812 Poisson noticed that inside matter the law of attraction between 
different material points cannot be the law of Newton, because the potential 
cannot satisfy there a Laplace equation (Poisson, 1812). He has actually noticed 
that the Newtonian density of matter becomes instrumental there, and that the 
law of Newton corresponds in fact to a zero density (see also (Poisson, 1833)). 
Poisson might have thus sensed the possibility of still other forces, besides those 
going inversely with the square of distance, corresponding to nonzero density of 
matter. Only after the work of Gauss became it gradually clear that the force 
inside matter should be taken first and foremost as a flux, and therefore 
expressed by its divergence, rather than by its curl as in mechanics of a single 
material point. And this divergence has as expression the Newtonian density of 
matter. However, in this approach the matter has to have the essential property 
of vacuum, which turns out to be the homogeneity with respect to space, in 
order to be possible to correctly characterize it by a density. This desideratum 
is, nevertheless, far from being satisfied with no further qualifications, for the 
homogeneity is a matter of scale. As Einstein says somewhere, the universe is 
homogeneous only ‘on average’. The physics of last century added to this the 
essential observation that the property of homogeneity ‘on average’ should be 
respected at any scale. 

 Indeed, ‘on average’ the density of matter is never zero, not even 
hypothetically. Although we can imagine some smearing out procedure in order 
to calculate a density, that doesn’t mean that we hit the real thing. As a matter of 
fact, the evaluations of the density of matter in universe taken today into 
consideration as scientific figures, don’t even represent the Newtonian density 
as required by the Poisson’s equation, but numbers obtained from various rough 
evaluations, with the substantial contribution of some numerical densities in the 
sense of Hertz (Hertz, 2003). These are combined with even more arbitrary 
evaluations of the volume of space where evaluations are made, assuming, still 
quite arbitrarily, that the matter should have a certain constitution in those 
regions of space. This is also the manner of evaluation of density for all the 
analyses related to the case of Sagittarius A*. However, with so many 
uncertainties in our hands, one can hardly think of a right quantitative 
appreciation of the density of matter! Useless to say, the very same is the case 
of evaluation of any density to be used into Poisson’s equation. 

 
5. Back to the General Newtonian Forces 

 
 We can see, therefore, that the development of differential calculus 

gradually spirited away the identity of force so to speak, i.e. the physical 
parameters representing the orbit from the expression of the magnitude of force. 
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Indeed, the force could now be calculated as a solution of a differential equation 
in satisfactory limiting conditions. The force thus became a plain vector. And 
the most natural among the analytical conditions a force vector should satisfy, 
when referring it to a continuum, seem to be the classical ones, generalizing the 
properties of the Newtonian force from Eq. (13), which show that it acts in 
vacuum and is conservative: 

 

0; 0f f∇⋅ = ∇× =
  

             (24) 
 
In fact, at some moment, the classical theory of forces even stipulates 

specifically that a certain force vector can be split into a sum of a divergence-
free part and a curl-free part – the so-called Helmholtz decomposition – and that 
the decomposition is unique. The conditions (24) legalize, so to speak, the two 
essential properties of the Newtonian gravitational force, only implicitly 
contained in the Poisson equation. The first condition says that the source of 
forces is the Newtonian density, but a vacuum force, like the Newtonian 
gravitational force, has no source; the second condition shows that the force is 
central, therefore conservative. 
 Let’s say that we have obtained a formula for the magnitude of force in 
vacuum. The essential condition in order to be able to even use that formula is 
obviously that the force should satisfy the first Eq. (24). The second condition is 
only incidental, so to speak. However, if the magnitude of the force should 
depend exclusively on distance, then both conditions are satisfied only for the 
Newtonian force with magnitude inversely proportional with the square of the 
distance. Indeed, a central force with the magnitude depending exclusively on 
distance can be written in the form 
 

( ) ( ) rf r f r
r

=




          (25) 

 
where ( )f r  is the magnitude of force. The second condition from Eq. (24) is 
automatically satisfied, while the first condition amounts to  
 

2( ) 2 ( ) 0 ( )rf r f r f r
r
µ′ + = ∴ =                    (26) 

 
Here the accent denotes the derivative with respect to the variable. Now 

it becomes obvious that the central forces inside matter, with magnitude 
depending exclusively on distance, require also a certain behavior of the density 
of matter depending on that distance, otherwise it is not a possible force whithin 
matter. Such a property is hard to understand geometrically, but is easy to 
understand… parametrically, as it were. More specifically, it is hard to 
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understand that a continuum has density decreasing in the same way in every 
direction starting from each one of its points. This would mean contradiction 
indeed, when we consider two different neighboring points. It is very easy to 
understand though, that a continuum has a certain density depending on the 
distance between its points, in cases where this distance can be defined. 

 However, if a force is central – therefore Newtonian – and has the 
magnitude dependent not only on distance but on direction too, then instead of 
Eq. (25) we must have 

 

( ) ( , , )f r x y z rψ=


          (27) 
 
where x, y, z enter the expression of the magnitude of force by some algebraical 
combinations, other than the magnitude of the radius vector. In such a case the 
two conditions (24) boil down to 
 

3 0; 0x r
x
ψ ψ ψ∂

+ = ×∇ =
∂∑



                   (28) 

 
Therefore the function ψ  must be a homogeneous function of degree (–3), 

in the first place. If we limit our search to the functions derivable from the 
elliptic orbits of the planets, as Newton actually did, then such a function cannot 
be but of one of the following forms, also derivable from the second principle of 
dynamics (Darboux, 1877): 

 
3 3 2( ) ; ( )i j

ija r a x x− −⋅
           (29) 

 
Here the vector a  and the entries of matrix a are arbitrary constants, the 

coordinates are considered as contravariant, and the summation convention is 
respected. The expressions of forces are defined up to a multiplicative constant. 
We recognize in these the forces deriving from the Corollary 3 of the 
Proposition VII of Newton’s Principia. Enforcing on them the second of 
conditions (28), shows that the first case is impossible, because the vector a  
would then have to be null identically. The second case works only if the matrix 
a is a multiple of the identity matrix. But this shows that the force is simply the 
Newtonian gravitational one, with the magnitude inversely proportional with 
the square of the distance. We thus find the Newtonian force as a property of 
field, with no reference whatsoever to motion, once it is conditioned by Eqs. 
(24). As we already expressed it, the identity of orbit – and therefore of force 
itself – is lost. However, it comes back, only this time through the initial 
conditions serving to solve the differential Eq. (15). 

 The inference about the existence of such particular forces in a problem 
of astrophysics should therefore be conditioned by the fulfillment of conditions 
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(28), therefore of the conditions (24). Those conditions reduce the class of 
forces, as Eqs. (29) show it in the most general case. Only the existence of 
Keplerian orbits would guarantee that these forces depend exclusively on 
distance, and moreover that their magnitudes are inversely proportional with the 
square of distance. This is a condition plainly satisfied by all of the results in the 
Sagittarius A* case: it came to attention of the scientific community by the very 
specific stellar orbits in the first place! And as Sagittarius A* is always in one of 
the foci of these orbits, which are of course elliptical, there can be no question 
of the reality of Newtonian force (13) in this case. Provided, of course, the 
matter exists in that place, which is what the assumption of the existence of a 
black hole there brings about. We are not quite so sure as to what extent, and in 
what particular conditions, the Kepler’s second law, in its differential form, is 
satisfied for each one of those orbits. For, within Newtonian ideas, only the 
second of Kepler laws would be a clear indication of the presence and location 
of a center of force. As it happens though the theory of Newtonian forces works 
regardless of that law, and the conclusions of the present work should therefore 
remain theoretically valid (see (Mazilu, 2010; Mazilu and Agop, 2012)). 

 
6. The Variation of Orbit and the Production of Fields 

 
One of the main reasons for which we must appeal to the original 

Newtonian theory of forces in problems of astrophysics, like the one presented 
by the Sagittarius A* case, is that such a theory uses, almost explicitly we 
should say, an analogy which transcends the space scale of the problems in 
which this kind of forces is involved. The initial analogy was the one already 
mentioned in passing before, between sling shooting and the motion of planets. 
Then, with the gradual introduction of classical dynamics, the Eq. (15) made its 
entrance into the mathematics related to mechanics. And as long as we consider 
this equation as fundamental, one can prove that the force given by Eq. (13) is 
the only one justified from the point of view of space scale transcendence. 
Indeed, the Eq. (15) transcends the space scale, and no other force introduced in 
it satisfies this condition (Mariwalla, 1982). Therefore we are entitled to use the 
classical dynamics in describing the central part of the Milky Way just as we are 
entitled to use it in the case of describing planetary motions, or to state that the 
the stars move around the galactic nucleus following Keplerian orbits. It is at 
this juncture though, that we need to pay close attention to the concept of force 
to be used in astrophysical matters, for it might indicate some other fundamental 
things if it is to consider the point of view of space scale transcendence. 

 One historically important fundamental space scale transcendence is 
that allowing us to extend the conclusions of classical dynamics in the atomic 
realm. This means that the planetary – or nuclear – model of atom should be the 
only one entitled to close consideration from a theoretical physical point of 
view. This was indeed the case. Only, on this occasion we have learned that in 
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the microscopic realm the model does not work the same way as the planetary 
system proper. For, the light gets in: as long as electromagnetic phenomenon it 
should be attached to the atom, due to the electrical properties of this last one. It 
is here the point where the contradictions started brewing, forcing us to assign 
the light to the transitions between electronic orbits (Bohr, 1913). While the 
original Bohr’s work is refering to the simplest atomic model – the one for 
which the electronic orbit is a circle – there are strong reasons to believe that his 
conclusion is quite general: the light or, in general, any perturbation that can 
reach our eyes directly or through the intermediary of measurement devices, is 
due to transitions between orbits. The arms of spiral galaxies can thus be 
interpreted as geometric loci of such transitions points (Mazilu, 2010; Mazilu 
and Agop, 2012), whereby the stars, revolving along Keplerian orbits around 
galactic nucleus, conglomerate in stable structures. 

 Therefore, through the planetary model of atom, theoretical physics 
actually just enacted a status quo, naturally existing a priori by the space scale 
transcendence. However, by Bohr’s postulates, it is quite precise in the choice 
of the terms of analogy so to speak: the atomic model from microcosmos is 
analogous to the galaxy from macrocosmos, rather than to the planetary system 
per se. And by this, theoretical physics reinstated with full right the initial 
Newtonian forces, identified by the parameters representing the orbit from 
which they have been calculated. One might say that quantum mechanics of the 
atom was just a reaction of natural philosophy, which reclaimed the lost identity 
of the orbit in the expression of forces, or the lost identity of forces given by the 
orbit from which it was calculated. 

 
7. The Characteristic of Forces Transcending 

Mechanics 
 
The second of conditions (24) precludes the Newtonian forces from 

transcending mechanics, for it is equivalent with the conservation of mechanical 
energy, to the extent this is equivalent to work. The general Newtonian forces 
do not have this restriction: they are dissipative. For instance, the force 
characterizing a material point describing a Kepler orbit is given, according to 
Glaisher, by Eq. (5). Without any loss of generality, it can be written in vector 
form as 

( )3
13 23 33

( , ) rf x y
a x a y a

µ
=

+ +





                  (30) 

 
where ( , )x y  are the coordinates in the plane of motion. This force is of the form 
given in Eq. (29) with an obvious identification of function ψ, and for a33 = 0, in 
order to be considered a vacuum force. The general expression independent of 
the plane of motion is obviously the one using the first expression (29): 
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( ) ( )3 3( , , ) ( , , )rf x y z x y z
a r a r
µ µψ= ∴ =
⋅ ⋅





   

  
    (31) 

 
The first condition (29) is implicit, while the second condition is no 

more satisfied. In fact, we have 

43
( )
a rf
a r

µ ×
∇× = −

⋅

 



 

             (32) 

 
Therefore, the elementary work of this force is not integrable in the 

ordinary sense. However it is integrable in the Frobenius sense, therefore in the 
thermodynamical sense, i.e. we have 

 

L f dr wdFδ ≡ ⋅ =


           (33) 
 
for a certain functions w and F. This can be proved directly by noticing that the 
Cartan integrability condition ( )^ lim ^   0

x
L d Lδ δ

→∞
= , where ‘^’ is the sign of 

an ‘exterior’ operation (in this case differentiation) on differential forms, is 
satisfied in view of Eqs. (31) and (32). 

The classical motion sustained by the force from Eq. (31) is a Keplerian 
motion. This can be seen by solving the Binet’s equation of the Newtonian 
problem of motion 

3

3cos
au u µ
θ

′′ + =         (34) 

 
where u ≡ 1/r as usual, and the derivative is taken with respect to angle θ  
whose origin is the direction of the vector a . The general solution of this 
equation 

3
3

1 2
2( ) ( ) cos sin

cos
au w a w µθ µ θ θ
θ

= − + +
   

     (35) 

 

where 1w  and 2w  are some initial conditions of the problem. In the Cartesian 
coordinates ξ  and η  with respect to the center of force Eq. (35) becomes 
 

3 2 3 2
1 2( 2 ) ( 2 ) 0w a w aµ ξ ξη µ η ξ− + + − =                  (36) 

 
The center of the orbit has the coordinates 
 

63
2

3 2 6 2 3 2 6 2
1 2 1 2

;
2 2c c

w aa
w a w a w a w a

µξ η
µ µ µ µ

= =
− − − −             

(37) 
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Therefore the physical parameters entering the force – the components 
of the vector a  – determine also the characteristics of the Keplerian orbit 
induced by that force. This orbit is plane, with the plane determined by the 
initial conditions represented by the vector w



. The work of the force performed 
on the orbiting body is not zero, as in the case of the forces with magnitude 
depending exclusively on distance, but can be recognized by a flux through the 
surface enclosed by the orbit, for we have 

 
4( ) ( ) 3 ( ) ( )

Orbit Surface Surface
f r dr f dS a r a r dSµ −⋅ = ∇× ⋅ = − ⋅ × ⋅∫ ∫∫ ∫∫
   

     

   
(38) 

 
What, though, if the orbit is not is not a closed curve?! In the Sagittarius 

A* case, for instance, all the data we have at our disposal, except the one 
referring to S02, come only with segments of the whole orbit. Therefore, such 
data would only refer to the work done by force along an open segment of the 
orbit, and the proper question would be the to ask about the variation of this 
integral along the orbit. A solution to this problem is provided by the transport 
theorem (Betounes, 1983)  in the form 

 

( ) ( )
[( ) ]

t t

P

Q

d f dr f v dr f v
dt ϕ ϕΓ Γ

⋅ + ∇× × ⋅ = ⋅∫ ∫
  

   

               (39) 

 
Here we have a subtle understanding of things: Γ  is the segment of 

curve initially accessible. It evolves due to the motions of heavens – not only of 
the body on which we have concentrated our attention. The evolution is 
accounted for by a family tϕ of morphisms depending on time in the sense that 

time is a continuous index of the family: for each moment of time there is a 
morphism mapping the initial segment Γ , between points P and Q of the orbit, 
to the current one denoted ( )tϕ Γ . The Eq. (39) can be reckoned as a continuity 

equation, showing how the power generated by force is dissipated. 
 In the particular case of Eq. (32) we have 
 

3 4 3

( ) ( )
( ) ( ) 3 ( ) ( ) ( ) ( )

t t

P

Q

d a r r dr a a r r v dr a r r v
dt ϕ ϕ

− − −

Γ Γ
⋅ ⋅ − × ⋅ × ⋅ = ⋅ ⋅∫ ∫
             

(40) 

 
Because the motion is plane, the second term is zero, so that we are left 

with 
3 3

( )
( ) ( ) ( ) ( )

t

P

Q

d a r r dr a r r v
dt ϕ

− −

Γ
⋅ ⋅ = ⋅ ⋅∫
       

          (41) 
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which means 

{ }3 2
2 3( )

cos ( )(cos )
(cos )t

P

Q

d vr dr
dt rϕ

α θθ
θ

− −

Γ
=∫             (42) 

 
where ( )α θ  is the angle between the current position vector and the current 
velocity vector. 

In case we use the geometry to identify the displacement with the 
velocity, instead of (37) we must have 

 

12 22 11 12( )
yx vv

a x a y a x a y
=

− + +
    (43) 

so that Eq. (36) becomes 

( )
11 12 12 22

42 2
11 12 22

2 2
11 12 22

( ) ( )( ) 3
2

( 2 )

a x a y y a x a y xrotf v dr
a x a xy a y

d a x a xy a y

µ + − +
× ⋅ = ⋅

+ +

⋅ + +



 

        

(44) 

 
Both the Eqs. (38) and (44) show that when the orbit is a circle, the 

dissipative term is zero: in order to have dissipation the elliptical orbit is a 
necessity! 

A rational approach of the problem of Newtonian forces is that where 
one accepts that the centripetal force exists in heavens, but it is submitted 
strictly to the third principle of dynamics. Therefore the centripetal force cannot 
be calculated but only from the centripetal acceleration, it is not the Newtonian 
force. This principle leads to reasonable results. Indeed for the conic section 
from Eq. (1), referred to its center, the curvature vector defined as usual by 

 

( )
2 2

3 22 2

2
ˆ; xx y xy x y yy x

x y

f f f f f f f
k kn k

f f

− +
= ≡

+



           (45) 

has the magnitude 

( )
33

3 22

ak
x x

∆
= −

a
            (46) 

 
Now, the centripetal acceleration is given by the general expression 
 

( )
2

2 33
3 22

a vkv
x x

∆
≡ −

a
    (47) 
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Here v  is the magnitude of the tangential velocity, common to both the 
orbit and the oscullating circle. As the magnitude of the tangent velocity as 
given by Eq. (43) should be 

 
2 2v x x∝ a                (48) 

 
the magnitude of the pure centripetal force becomes 
 

( )1 22
f K

x x

∆
=

a
                (49) 

 
One can see that in the special case in which the orbit is a circle, the 

centripetal force is inversely proportional with the radius of the circle, as it 
should be. This is actually the long distance force used by Sciama to justify the 
universal inertia. 

 A little discussion on the importance of the tangent dynamics – the 
hamiltonian dynamics here. If the velocity from Eq. (43) is also the unique 
velocity of the material point in universe. then its components must be taken as 
the time derivatives of the coordinates, and the equations of motion are the 
Hamilton equations 

0 1
;

1 0
x x

− 
= ≡  

 
Ia I                    (50) 

 
This is the essential idea of the theory of constraints! In general though, 

we need to take for the velocity 
 

v x= Ia        (51) 
 
and the condition of tangency still needs explanation. This is the general 
problem of Newton: what are the possible orbits in a point of one of them, taken 
as reference orbit? In other words, what are the orbits in a point, corresponding 
to the same velocity vector? The Eq. (51) shows that they are given by the 
differential equation 
 

( ) 0 ( ) 0d x d x dx= ∴ + =a a a                       (52) 
 
which is, in fact an evolution law. In case the orbit is not a parabola, this 
equation of evolution can be written as an equation of motion for coordinates: 
 

1( )dx d x−= −a a                  (53) 
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What is the meaning of this evolution? Let’s assume that the orbit varies, 
therefore the quadratic form defining it varies. This variation implies both the 
variation of the vector and the variation of the matrix, so that we must have 

 
d x x dx x x d x x dx= + +a a a a                      (54) 

 
Using now the Eq. (53), shows that the variation of the quadratic form 

is only dictated by the variation of its coefficients: 
 

d x x x d x= −a a                         (55) 
 
Moreover, if one takes even the quadratic form from Eq. (25) as it is, 

viz. nonhomogeneous, then its variation is given by 
 

1
3 32 2d x x x d x a d x da x−= − − +a a a a            (56) 

 
Now one can see that this variation has a certain form for a certain 

evolution of the center of force itself. If, for instance, one takes 
 

1
3 3( )da d a−= a a                      (57) 

 
then the variation of the quadratic form reduces to the variation of the 
coefficients as before. 

One can therefore guess that there is a certain correlation between the 
motion of the center of force and the motion of the current (material) point 
along an orbit. It is like, if the current point on the orbit describes a Ptolemaic 
epicycle, the center of force must describe a conic, which shrinks or extends in 
dimensions as the motion along the orbit proceeds. The problem would then be 
to find the correlation between the two ‘epicycles’. In the classical case one 
talks about the motions of the material components around the common center 
of mass. 

 Condition (57) expresses the fact that the family of conics described by 
the variation of the parameters is a family having the same center. Indeed, the 
equation of the center of the conic (25) is 

 

3 0ca x+ =a         (58) 
 
Now, if the center is fixed, then we have by differentiation: 
 

1 1
3 3( ) 0da d a− −+ =a a              (59) 
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Expanding this equation gives the Eq. (57). Here we need to always 
remind that in solving Eq. (57) we don’t necessarily have the null initial 
condition, but this is given by (58) whereby the initial values of the entries of a 
are the values corresponding to the current orbit, where the differentiation is 
performed. Onbly in case (0, 0) are the coordinates of the center of current orbit 
one can have null initial condition, but this is in general just a convention. 

 The classical theories are usually focused on the idea of the same 
center of force, according to which the geometrical center of the orbit varies. 
The best known example is that of the perihelion rotation. The equation of 
evolution of the center of orbit over the family is in this case the Eq. (59) 
above. There is therefore a duality here: a family of orbits of the same 
geometrical center is described by an evolution of the center of force, while a 
family of orbits of the same center of force is described by an evolution of the 
geometrical center. The orbits of the same geometrical center are then apt to 
describe, for instance, motions inside the extended attractive body (the Sun, 
the Earth, etc), while the orbits of the same center of force are apt to describe 
motion inside the extended attracted body (the Earth, the Moon, etc.). 
Nevertheless, the center of force, as well as the geometrical center, have 
similar behavior from a kinematical point of view. The difference between the 
two descriptions cannot come but from the fact that the two bodies have 
different physical properties, like viscosity for instance. 

 
8. Conclusions 

 
Many astrophysicians argue for the existence of a supermassive black 

hole at the center of Milky Way, in the location of the radio source Sagittarius 
A*. In our opinion the evidence suggest just the opposite.  

While the observational data on the orbits of the starry objects around 
Sagittarius A*, being of a projective character, are entirely reliable, their 
physical explanation uses quite a particular type of Newtonian forces, namely 
those with magnitude depending exclusively on the distance between bodies. 
This limitation assumes a priori that the bodies connected by such forces are 
special material points, viz. space positions endowed with mass. At space scales 
such as that of the galactic center region in discussion, this assumption is not 
realistic, and therefore, implicitly, such particular forces are themselves not 
quite realistic. Still using Newtonian forces in argument, strongly suggested by 
observational data as a matter of fact, one should allow, on such an occasion, 
their full generality. This means that we only need to assume that they are 
central forces with no other further constraints. 

Within the framework of the Newtonian theory of forces this freedom 
has important theoretical consequences discussed at length in the sections 
above. Among these consequences, maybe the most important one, from an 
astrophysical point of view, is that the presence of a supermassive black hole in 
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the center of Milky Way might not be a sustainable assumption. Moreover, if 
we look at the fact that not all scientists agree with the current definition and 
essential characteristics of a black hole (Hawking, 2014): “It has been 
suggested that the resolution of the information paradox for evaporating black 
holes is that the holes are surrounded by firewalls, bolts of outgoing radiation 
that would destroy any infalling observer.  Such firewalls would break the 
CPT invariance of quantum gravity and seem to be ruled out on other grounds. 
A different resolution of the paradox is proposed, namely that gravitational 
collapse produces apparent horizons but no event horizons behind which 
information is lost. The absence of event horizons mean that there are no 
black holes - in the sense of regimes from which light can’t escape to infinity. 
There are however apparent horizons which persist for a period of time. This 
suggests that black holes should be redefined as metastable bound states of the 
gravitational field. It will also mean that the CFT on the boundary of anti 
deSitter space will be dual to the whole anti deSitter space, and not merely the 
region outside the horizon.” 

 
 

REFERENCES 
 

Balick B., Brown R.L., Intense Sub-Arcsecond Structure in the Galactic Center, The 
Astrophysical Journal, 194, 265-270 (1974). 

Bertrand J., Théorème Relatif au Mouvement d'un Point Attiré Vers un Centre Fixe, 
Comptes Rendus de l'Académie des Sciences Paris, 77, 849-851 (1873). 

Betounes D.E., Nonclassical Fields with Singularities on the Moving Surface, J. Math. 
Phys., 24, 12, 2304-2311 (1983). 

Bohr N., On the Constitution of Atoms and Molecules, The Philosophical Magazine, 26, 
1-24 (1913). 

Darboux G., Recherche de la Loi que Doit Suivre une Force Centrale pour que la 
Trajectoire qu’elle Détermine Soit Toujours une Conique, Comptes Rendus de 
l'Académie des Sciences Paris, 84, 760-762, 936-938 (1877). 

Darrigol O., Electrodynamics from Ampère to Einstein, Oxford University Press, New 
York, 2002. 

Darrigol O., James MacCullagh Ether: An Optical Route to Maxwell’s Equations?, The 
European Physical Journal, H35, 133-172 (2010). 

Eckart A., Genzel R., Ott T., Schödel R., Stellar Orbits Near Sagittarius A*, Monthly 
Notices of the Royal Astronomical Society, 331, 917-934 (2002). 

Hamilton W.R., On Theorems of Central Forces, Proceedings of the Royal Irish 
Academy, 3, 308-309 (1847). 

Hawking S.W., Information Preservation and Weather Forecasting for Black Holes, 
arXiv:1401.5761v1 [hep-th] (2014). 

Hertz H., The Principles of Mechanics, Dover Publications, New York, 2003. 
Gauss C.F., Théorèmes Généraux sur les Forces Attractives et Répulsives qui Agissent 

en Raison Inverse du Carré des Distances, Journal des Mathématiques Pures et 
Appliquées (Journal de Liouville), 7, 273-324 (1842). 



Bul. Inst. Polit. Iaşi, Vol. 64 (68), Nr. 2, 2018                                          47 
 

Ghez A.M., Salim S., Hornstein S.D., Tanner A., Lu J.R., Morris M., Becklin E.E., 
Duchêne G., Stellar Orbits Around the Galactic Center Black Hole, The 
Astrophysical Journal, 620, 744-757 (2005). 

Gillessen S., Monitoring Stellar Orbits Around the Massive Black Hole in the Galactic 
Center, The Astrophysical Journal, 692, 1075-1109 (2009). 

Glaisher J.W.L., On the Law of Force to any Point in the Plane of Motion, in Order that 
the Orbit may be Always a Conic, Monthly Notices of the Royal Astronomical 
Society, 39, 77-91 (1878). 

Mac Cullagh J., On the Intensity of Light when the Vibrations are Elliptical, Edinburgh 
Journal of Science, 86-88, Reprinted in The Collected Works of James Mac 
Cullagh, 14-16, 1831. 

Mac Cullagh J., On the Laws of Double Refraction of Quartz, Transactions of the Royal 
Irish Academy, 17, 461-469, Reprinted in The Collected Works of James Mac 
Cullagh, 63-74, 1836. 

Mac Cullagh J., An Essay Towards a Dynamical Theory of Crystalline Reflexion and 
Refraction, Transactions of the Royal Irish Academy, 21, 17-50; Reprinted in 
the Collected Works of James Mac Cullagh, 145-184, 1839. 

Mac Cullagh J., On the Optical Laws of Rock–Crystals, Proceedings of the Royal Irish 
Academy, 1, 385-386, Reprinted in the Collected Works of James Mac 
Cullagh, 185-186, 1840. 

Mariwalla K.H., Integrals and Symmetries: the Bernoulli-Laplace-Lenz Vector, Journal 
of Physics A: Mathematical and General, 15, L467–L471 (1982). 

Mazilu N., The Geometry of Heavenly Matter Formations, viXra.org: Classical 
Physics/1009.0062 (2010). 

Mazilu N., Sagittarius A*: a Compelling Case Against the Existence of a Supermassive 
Black Hole in the Center of Milky Way, viXra.org: Astrophysics/1206.0027 
(2012). 

Mazilu N., Agop M., Skyrmions: a Great Finishing Touch to Classical Newtonian 
Philosophy, Nova Science Publishers, New York, 2012. 

McMillan P.J., Binney J.J., The Uncertainty in Galactic Parameters, Monthly Notices 
of the Royal Astronomical Society, 402, 934-940 (2010). 

Newton I., The Principia, Prometheus Books, Amherst, New York, 1995. 
Oka T., Tsujimoto S., Iwata Y., Nomura M., Takekawa S., Millimetre-Wave Emission 

from an Intermediate-Mass Black Hole Candidate in the Milky Way, Nature 
Astronomy, 1, 709-712 (2017).  

Poincaré H., Les Idées de Hertz sur la Mécanique, Revue Générale des Sciences, 8, 
734-743 (1897). 

Poincaré H., The Foundations of Science, Science Press, New York and Garrison, 1921. 
Poisson S.D., Remarques sur une Équation qui se Présente dans la Théorie des 

Attractions des Sphéroïdes, Nouveau Bulletin des Sciences, Société 
Philomatique de Paris, 3, 388-392 (1812). 

Poisson S.D., Mémoire sur l’Attraction d’un Ellipsoide Homogène, Mémoires de 
l'Académie des Sciences de l’Institut de France, 13, 497-545 (1833). 

Reid M.J., Is there a Supermassive Black Hole at the Center of the Milky Way?, 
International Journal of Modern Physics D, 18, 889-910 (2009). 

Yang C.N., Mills R.L., Conservation of Isotopic Spin and Isotopic Gauge Invariance, 
Physical Review, 96, 191-195 (1954). 



48                                                             Nicolae Mazilu 
 

 

 
SAGITTARIUS A*: UN ARGUMENT ÎMPOTRIVA EXISTENȚEI 

UNEI GĂURI NEGRE ÎN CENTRUL CĂII LACTEE 
 

(Rezumat)  
 

Literatura din domeniul astrofizicii a încercat să contruiască un argument 
pentru existența unei găuri negre supermasive în centrul Căii Lactee, în locația sursei 
radio Sagittarius A*. În opinia noastră, folosind argumente de aceeași natură, dovezile 
existente arată exact contrariul. Astfel, în timp ce datele observaționale despre orbitele 
obiectelor stelare din jurul lui Sagittarius A*, având un caracter proiectiv, prezintă 
încredere, explicația lor fizică se bazează pe o categorie aparte de forțe Newtoniene, și 
anume acelea pentru care tăria lor depinde exclusiv de distanța dintre corpuri. În primul 
rând, această limitare presupune a priori faptul că aceste corpuri conectate de forțele în 
cauză sunt puncte materiale speciale, sau altfel spus sunt poziții în spațiu cu masă. La 
scări spațiale precum cea a centrului galactic în discuție, această presupunere nu este 
realistică și, prin urmare, în mod implicit, aceste forțe particulare nu sunt ele însele 
destul de realiste. Păstrând raționamentul acestor forțe Newtoniene, sugerate de fapt de 
datele observaționale, ar trebui, în acest caz, să acceptăm caracterul lor general. Prin 
urmare, trebuie doar să presupunem că acestea sunt forțe centrale, lipsite de orice alte 
constrângeri. Această libertate are importante consecințe teoretice în cadrul teoriei 
Newtoniene a forțelor, consecințe ce sunt discutate în prezenta lucrare. Printre acestea, 
cea mai importantă, din punctul de vedere al astrofizicii, este aceea că prezența unei 
găuri negre supermasive în centrul Căii Lactee poate să nu fie o presupunere 
sustenabilă. O alternativă este prezentată. 
 

 


