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Abstract. Using nonlinear dynamics of immunogenic tumors, A. 

Kuznetsov proposed a quantitative model for the interaction between effector 

cells and cells in a growing tumor. Adding radiation therapy to Kuznetsov's 

original model, we obtain a system that takes into account both destruction, 

repair and repopulation of tumor cells as well as the destruction and inhibition of 

immune cells. The values for 1 and 2 coefficients derived from the literature 

and clinical trials, where 1 represents the radiotherapy action factor on effector 

immune cells and 2 is the effect of radiotherapy on tumoral cells. Using Matlab, 

we obtained therapeutic diagrams for different 1 and 2 parameter values and it 
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is noted that for a well-defined range of these parameters, the tumors are reduced 

to the subclinical stage. 
 

Keywords: Kuznetsov model; system dynamics; immune cells; Matlab; 

radiotherapy. 

 
 

1. Introduction 

 

Cancer is one of the major factors of death and a better understanding of 

it is necessary in order to increase the survival rate for the patients suffering 

from this condition. Tumors common features can offers the starting point to 

build mathematical models describing the neoplastic growth. 

When the body is not infected, cells grow and divide in a very 

controlled way. Usually mutation in the DNA does occur but the reparation 

system in the body can obviate the damage. Sometimes the damage or change in 

the genetic material caused by these factors cannot be repaired though. In most 

cases the mutated cells do not cause cancer, but rarely can be occur. In these 

rare cases cells continue to multiply instead of dying. The mass of multiplying 

cells forms a neoplasia which can interfere with the whole human system. 

Unlike regular cells, cancer cells can experience uncontrolled growth, 

and therefore, cause damage to the genes involved in the cell division. Cellular 

division is called proliferation and in the case of cancer it occurs in a rapid and 

excessive way. 

Cell migration is a process which allows development and maintenance 

of multicellular organism, for instance when tissue is created and wound 

healing. On the other hand, cell invasion is the ability to actively invade tissue, 

this is in fact an extension of the cell migration. Invasion is the property of 

tumour cells. The invasive grade of the cell depends on the location of the 

tumour. Some tumours grow in a limited way and stay in one spot while others 

move to other locations in the body through the blood and lymph systems. 

“T-cell, also called T lymphocyte, is a type of leukocyte (white blood 

cell) that is an essential part of the immune system. T-cells are one of two 

primary types of lymphocytes B cells being the second type-that determine the 

specificity of immune response to antigens (foreign substances) in the body. 

T-cells originate in the bone marrow and mature in the thymus. In the 

thymus, T-cells multiply and differentiate into helper, regulatory, or cytotoxic 

T-cells or become memory T-cells. They are then sent to peripheral tissues or 

circulate in the blood or lymphatic system. Once stimulated by the appropriate 

antigen, helper T cells secrete chemical messengers called cytokines, which 

stimulate the differentiation of B cells into plasma cells (antibody-producing 

cells). Regulatory T-cells act to control immune reactions, hence their name. 

Cytotoxic T cells, which are activated by various cytokines, bind to and kill 

infected cells and cancer cells. 



Bul. Inst. Polit. Iaşi, Vol. 64 (68), Nr. 4, 2018                                 23 

 

Without a doubt, introducing immune checkpoint inhibitors to the clinic 

was a major breakthrough in the war against cancer. For some patients tumor 

responses to anti-PD-1/PD-L1 or anti-CTLA4 therapies are spectacular and last 

long after the therapy is withdrawn. Interestingly, disease regression can occur 

even after an initial phase of tumor growth during the therapy. However, despite 

spectacular successes, therapies based on checkpoint inhibitors still suffer from 

relatively low response rates. There is an urgent need to establish reliable 

patient-specific biomarkers that would solve this problem. The current focus is 

on using, among others, measures of pretreatment T cell infiltration, PD-L1 

expression profiles, inflammatory status, and mutational burden of the tumor. 

Finding a reliable correlation will allow for designing specific therapy 

scheduling or for incorporating appropriate adjuvant treatment” 

(https://computecancer.wordpress.com; https://www.britannica.com/science/T-cell; 

Brondz, 1987; Callewaert et al., 1988). 

 Combining radiotherapy with immune checkpoint blockade may offer 

considerable therapeutic impact if the immunosuppressive nature of the tumor 

microenvironment (TME) can be relieved. In this study, we adopt a 

mathematical model that was introduced by Kuznetsov and colleagues back in 

1994 to investigate the effects of anti-PD-1/PD-L1 therapy depending on the 

pretreatment tumor characteristics, which may eventually illustrate a potential 

synergism between immune checkpoint inhibitors and radiotherapy. The way in 

which the model was formulated more than two decades ago allows for elegant 

and straightforward incorporation of such a treatment (Kuznetsov et al., 1994). 

 

2. Short Remember of Kuznetsov Model 

 

Type the second section of your paper in here. Use as much space as 

necessary.  

In his paper Kuznetsov and his colleagues introduced the following 

relatively simple mathematical model describing tumor-immune system 

dynamics: 

 
   

 
     0

E t N t
E t s p d E t mE t N t

g N t
   




 

          1N t aN t bN t nE t N t     (1) 
 

where E(t) and N(t) are the numbers of immune effector cells and cancer cells, 

respectively. “Taking into account that anti-PD-1/PD-L1 treatment reduces the 

probability that cytotoxic T cell will be “turned off” during the interaction with 

cancer cell, we can assume that the treatment decreases the value of parameter 

m. To reduce the complexity of the following analysis, but without the loss of 

generality, we won’t consider any pharmacokinetics and pharmacodynamics of 

https://computecancer.wordpress.com/
https://www.britannica.com/science/T-cell
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the drug, i.e. we assume simply that during the treatment parameter m has a 

lower value mT ” (Kuznetsov et al., 1994). 

First, we should check the predictive model dynamics for the nominal 

parameter values proposed by Kuznetsov and others. Let us simplify that task by 

performing non-dimensional procedure first. After defining x = E/E0, y = N/N0, 

and  = nN0t with E0 = N0 = 10
6
 we obtain the slightly simpler system 

 

xy
x x xy

y
   


   


    (2) 

 

(1 )y y y xy      
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m
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0
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nN
  , 

0

a

nN
   and 

0bN  . We can see that in the non-dimensional model  is the parameter 

affected by treatment. 

Using parameters proposed in Kuznetsov’s original paper we obtain the 

following values of non-dimensional parameters: 

0.118, 1.131, 20.19, 0.00311, 0.374, 1.635, 0.002              

“We can start our analysis with evaluating numerically the model 

behavior for the above set of parameters. In order to do that systemically we 

will plot the phase portrait in which behavior of the solutions in the whole phase 

space can be viewed. MATLAB is quite a convenient environment in which we 

can do that quite easily by using the built-in quiver function (a quiver plot 

displays velocity vectors as arrows with components (u,v) at the points (x,y): 

Program 1” (https://computecancer.wordpress.com). 

After running the above script we should see an image similar to the 

one below. 

 
Fig. 1 ‒ Phase portrait for the Kuznetsov & colleague’s model 

(https://computecancer.wordpress.com). 

https://computecancer.wordpress.com/
https://computecancer.wordpress.com/
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“We can see in the phase portrait that there are two steady states to 

which solutions tend to, one with substantial tumor burden, i.e. with large 

value of variable y, the second reflecting probably subclinical disease. Of 

course, those are the initial conditions that govern to which of them the 

solution will tend to. Let us now check analytically if the above behavior is 

not a numerical artifact. 

First of all, the above system has a smooth vector field and thus, 

solutions exist and are unique. Moreover, it is easy to check that the 

solutions are bounded and non-negative. We are interested in calculating all 

of the possible steady states of the system and evaluating their stability. For 

any set of parameters we always have a semi-trivial steady state

 ”

,0




 
 
 

 

(https://computecancer.wordpress.com), i.e. the state without any tumor cells. 

By calculating null-clines and checking their intersections we obtain the 

following polynomial equation for other possible steady states. 
 

3 2
3 2 1 0( ) 0W y C y C y C y C         (3) 
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    (4) 

 

We can see that, as we have cubic polynomial, there are up to three 

additional steady states. The exact number of solutions depends obviously on 

particular Ci values. 

The local stability of the steady states can be evaluated by checking the 

eigenvalues of Jacobian matrix for the considered system: 
 

2( , ) ; ( )

(1 2 )

xy
xy

yJ x y y

y y x


 

 

 


     


   

   (5) 

 

“If all eigenvalues of J(S) have negative real parts then we know that 

the steady state S is locally asymptotically stable; if any of the eigenvalues have 

positive real part, then we know that the steady state is unstable. 

An additional step that will be further required to draw definite 

conclusions is to show that there are no cycles in the system, i.e. all solutions 

https://computecancer.wordpress.com/
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tend to one of the steady states. We can do that by using Dulac-Bendixon 

theorem with the function defined as B(x,y)=1/(xy). 

We are interested in behavior of the system for different values of 

parameter  under the treatment. Thus, having the above equations we will plot 

a bifurcation diagram for the parameter  = T, i.e. we will plot existing steady 

states and their stability for different values of parameter T. This can be 

achieved by using the following MATLAB script: Program 2. After running the 

code we should see a plot similar to the one below, but without the red dots that 

indicate the value of T considered originally by Kuznetsov and colleagues” 

(Kuznetsov et al., 1994). 
 

 
 

Fig. 2 – Bifurcation diagram (https://computecancer.wordpress.com). 

 

“We can see in the bifurcation diagram that for nominal  value we 

have two stable steady states, so the results of our initial numerical 

investigations are confirmed. Moreover, we see that: 

‒ if nominal, i.e. without treatment, value of  is too large then we can 

reduce the tumor size only temporary. In other words once we stop the 

treatment the tumor will grow back to the clinically detectable sizes. 

‒ if nominal, i.e. without treatment, value of  is smaller than a given 

threshold ( 0.013) then we can durably reduce the tumor to subclinical disease 

state, if during the treatment T is sufficiently small (drug dose is sufficiently 

large) for sufficient amount of time. In other words, the tumor won’t grow back 

once we stop the treatment. 

This type of behavior is typically referred to as hysteresis. Most 

importantly results is consistent with clinical observation that in some patients 

long lasting responses may be achieved even after the drug withdrawal. 

From a mathematical point of view everything boils down to the 

question if we can force the trajectory to intersect the curve separating basins of 

https://computecancer.wordpress.com/
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attractions in the treatment free case. Once this is achieved we can withdraw the 

treatment and the patient’s immune system will take care of the disease by 

itself. Thus, for each initial condition in the phase space we should look for the 

value of  (scaled time) for which the intersection (if possible) occurs. 

First, we need to approximate the curve separating the basins of 

attraction. This can be achieved by the MATLAB script: Program 3. 

Then having the curve we can implement the numerical solver in a way 

that it stops integration once the separating curve is reached. This is done by the 

MALTAB script PROGRAM 4. 

Using the above procedures we can look at how trajectories starting 

from the same initial condition (initial point) will behave for different T 

values” (https://computecancer.wordpress.com). 

 
Fig. 3 ‒ Separation curve between the basins of attraction and initial conditions. 

 

“In the above plot we see that if the drug dose is not sufficient ( 

reduction is not sufficient) then no matter how long we keep the patient on 

therapy, the tumor will grow to its maximal possible size (compare T = 0.9 ) – 

therapy fails. However, if we increase the dosage, i.e. reduce  even further, 

then we can move the tumor growth trajectory to the favorable outcome 

(compare T = 0.7 and T = 0.4). Interestingly, as observed in a clinic, the 

favorable outcome is achieved after initial phase of tumor growth under the 

therapy” (https://computecancer.wordpress.com). 
 

3. Linear Quadratic Model and the “5 Rs” of Radiobiology 
 

As known from radiobiology, the most important radiation damage is to 

the DNA in a cell, especially double-strand breaks (DSBs) of the DNA double 

helix. A dose of 1Gy results in thousands of ionizations in the cell's nucleus of 

https://computecancer.wordpress.com/
https://computecancer.wordpress.com/
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which a small part (about 40 in humans) induce DSBs. Most of these DSBs are 

repaired and some are miss-repaired. Many miss-repairs involve a reaction 

between two different DSBs. At a typical dose of several Grays, at least one 

miss-repair usually occurs, resulting in the cell's death. 

The LQ-model incorporates these aspects and renders a survival 

fraction depending on the dose administered. This model is used to develop 

treatment schedules based on the best outcome of the Eq. (5). 

The model describes cell killing by the following mechanisms: a single 

radiation track (e.g. -ray) produces various lethal lesions (DSBs) with a yield 

proportional to the dose, and miss-repair of pairs of DSBs produced from different 

radiation tracks produce lethal lesions with a yield proportional to the square of the 

dose. This results in the following equation for the yield of lethal lesions. 
 

2Y D D     with , 0       (6) 
 

D is the dose administered (Gy), D lethal lesions produced per single 

radiation track and D
2
 are the lethal lesions produced from different radiation 

tracks (Brenner et al., 1998; Cappuccio et al., 2009; Sachs et al., 2001; 

Thomson et al., 1991). If more than one unrepaired break exists in a cell at the 

same time, a miss-joining can produce a lethal lesion. These lethal lesions 

follow a Poisson distribution from cell to cell. Therefore, the LQ-model reads 
 

2
*

0

exp( ) D DS
S Y e

S

          (7) 

 

where S is the survival fraction, S
*
 are the number of cells left after radiation 

and S0 are the initial number of cells. 

 
Fig. 4 ‒ Cell survival curves after a single dose of radiation using Eq. (8),  

with red for / = 1.5, green for / = 10 and blue line for / = 20. 
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Fig. 4 shows three survival curves using Eq. (6), each with a different 

value for the ratio /. The red curve depicts a survival curve for prostate 

cancer, the green curve for non-small cell cancers and the blue curve for 

advanced head and neck cancer. The ratios were taken from Rourke et al. 

(2009). From this plot one can see how different cancer types need different 

radiation doses to kill the same percentage of cells. Clearly, advanced head and 

neck cancer cells are more radio resistant and need a higher dose to die 

compared to prostate cancer cells. 

The ratio / is a measure of a tissue's sensitivity. Prostate cancer is 

slow proliferating and the tissue responds late, thus having a higher repair 

capacity (since the cells have time to repair the damage before replicating) 

compared to advanced head and neck cancer, which is an early responding 

tissue with an aggressive cell proliferation rate and low repair capacity. Low 

/ ratios are equivalent to a higher capacity for self-repair (e.g. normal tissue) 

and high ratios mean that the capacity for self-repair is low (e.g. tumours). Most 

normal tissue ratios are about 1-3Gy whereas most tumours have a ratio of 

about 10Gy. 

The LQ-model in Eq. (6) only allows for a single dose of radiation. 

However, if the dose is not administered in one single session but in n fractions, 

each of dose d, the equation reads 
 

2nd ndS e         (8) 
 

So far this is a very simple model that describes cell killing depending 

on the dose of radiation. However, there are more factors that influence the 

capability of cells surviving radiation. These are known as the “5 Rs” of 

radiobiology: repair, repopulation, re-distribution over the cell cycle, re-

oxygenation and radio resistance.  

As we can easily figure out, the existing radiotherapy model (LQ-

model) does not include the time course t of the treatment in its equation. This 

is a huge disadvantage as one cannot see the long term effect of radiation and 

should be included in future models. 

 

4. Thomson Model for Human Blood Lymphocyte Population 

 X-Ray Survival Curves. Single Hypothetical 

Model for the Shape of Survival Curve Population Prediction  
 

Considering a theoretical population uniform in radio-sensitivity, then 

according to classical target theory the frequency distribution of hits per cell 

during irradiation would be Poisson in form. If the number of cells becoming 

dead by time t after irradiation were determined by the number of hits n 

received (n > 0 assumed lethal), the fraction of cells still alive (i.e. apparent plus 

real survivors) S at time t would be given by (Thomson et al., 1991). 
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  (9) 

 

where  relates to the target size, D is the average number of hits on-target, 

the measured survival Si is expressed as a function of that (S0) in the un-

irradiated population and fn (t) is some function of t defining the fraction of cells 

still alive out of those receiving n hits. If it be assumed instead that the number 

dead by time t is independent of n, then 
 

exp( ) ( )[1 exp( )]S D f t D          (10) 

 

 
 

Fig. 5 ‒ Theoretical survival curves. 'A' is a single, uniformly radiosensitive cell 

population exhibiting the (log) survival-radiation dose relationship predicted by Eq. (10) 

for times t1, t2, t3, t4 and t after irradiation with f(t) having the values 0.7, 0.5, 0.35, 0.25 

and 0.00 respectively. The presence (where t < t) of lethally-hit cells still alive and 

indistinguishable from real survivors obscures the linear relationship for true (ultimate) 

survival by creating a continuous curve. The additional presence instead of totally radio 

resistant (unresponsive) cells has the same transforming effect; as illustrated here for 

population 'B' at t which comprises 50 per cent of 'A' at t, and 50 per cent such radio 

resistant cells. 
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 This expression defines the simple model. It apportions the surviving 

cell fraction into real survivors (the term exp (-D)) and apparent survivors (the 

term f(t){1 - exp (-D)}. Fig. 5 shows how the shape of the survival curve 

afforded by this model for hypothetical population 'A' would differ at different 

times after irradiation corresponding to f(t) values of 0.7, 0.5, 0.35, 0.25, and 

0.0, and in the dose range of 0 to 3/; where 1/ Gy is the dose (D 37) allowing 

37 per cent real survival (that defines the radio-sensitivity), 2/ is that allowing 

13 per cent and 3/ Gy is that allowing 5 per cent real survival. 

The presence of apparent survivors (i.e. where f(t)<1 and > 0) alters the 

shape of the graphical relationship obtaining (where f(t) = 0) between the 

natural logarithm of true survival and radiation dose from a straight line to a 

smooth curve which flattens off as the number of real survivors approaches 

zero. Therefore, function f (t) may be taken explicitly as exp(-t), where  is the 

first-order rate constant. 
 

exp( ) exp( )[1 exp( )]S D t D          (11) 

 

A survival curve so-shaped if realized in experimental practice would 

be indistinguishable by eye from that representing a cell population 

heterogeneous in radio-sensitivity and/or additionally comprising cells totally 

resistant at the highest dose tested. 

 
5. Adding Radiotherapy (Continuous Radiation) to the 

Tumor-Immune System 
 

To derive a model that includes continuous radiation, we use the “5Rs” 

of radiobiology. We first add a term to the existing tumor-immune system that 

reduces the amount of tumor cells if radiation is administered: 
 

 2( ) ( )(1 ( )) ( ) ( ) ( )N t aN t bN t nE t N t DN t     with 2 0    (12) 

 

The right hand side of Eq. (12) is the same as the tumor growth 

model (Eq. (1)) except for the term 2DN being subtracted from the growth 

term. D is the amount of radiation administered (Gy) and 2 related to how 

much the drug damages the tumoral cell per Gy. We assume continuous 

radiation and therefore set 
 

D d   0 max( , )t t t    

 

d is a constant amount of radiation given during a finite interval of time, from t0 

to tmax; after this time, one makes the measurements. If d = 0, i.e. no radiation is 

administered, the model is reduced to the growth model of Eq. (1). 
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Repair. Since we know that DSBs caused by radiation can be repaired, 

we want to include this in our model by adding a term, which increases the 

number of cells. The equation reads 

 

2 2 2( ) ( )(1 ( )) ( ) ( ) ( ) ( )N t aN t bN t nE t N t DN t DN t         with 2 0     (13) 

 

2 represents the factor of cells that are able to repair themselves after radiation 

and 2 is the repair rate, with 2 = ln 2/Tr, Tr being the repair half-time. 

Repopulation. In addition to repair, cells can also continue to 

proliferate, either between fractions of radiation or during continued low dose 

radiation. If we assume 2 to be the amount of cells able to proliferate, then the 

model reads 

 

2 2 2 2( ) ( )(1 ( )) ( ) ( ) ( ) ( ) ( )(1 ( ))N t aN t bN t nE t N t DN t DN t DaN t bN t           

with 2 0       (14) 

 

Also, we add a term to the existing model that reduces the amount of 

immune effector cells if radiation is administered, and get: 

 

 
   

 
     0 1 ( )

E t N t
E t s p d E t mE t N t DE t

g N t
    




  with 1 0        (15) 

To be absolutely rigorous, we would have to employ the same “5 Rs” of 

radiobiology to act on the immune effector cells too, and introduce a repair and 

a repopulation term. Yet, this would have complicate too much the starting 

system (1) and we only wanted to test if adding radiation therapy to Kuznetsov's 

original model would change the behavior of the interaction between effector 

cells and cells in a growing tumor.  

Consequently, introducing the effect of continuous radiation therapy 

Eqs. (14) and (15) by means of the terms 1, 2, 2, 2, 2, and D=d the amount 

of continuous radiation administered (in Gy) and after some straightforward 

algebra manipulation, we get the same form for the new immunotherapy-

radiotherapy system, as in Eq. (1) 

 

( ) ( )
( ) ( ) ( ) ( )

( )

( ) ( ) 1 ( ) ( ) ( )

E t N t
E t s p E t mE t N t

g N t

B
N t AN t N t nE t N t

A

   


 
   

 




   (16) 

 

where we made the notations 
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    (17) 

 

We can check easily, that if one takes D = d = 0 (i.e. no radiation is 

administered), the model (16) reduces to the growth model (1).  

 Finally, we get the same form for the new non-dimensional 

immunotherapy-radiotherapy system, as in Eq. (2) 

 

' '(1 )

xy
x x xy

y

y y y xy

  


 

    


  





    (18) 

 

with the following notations 

0 0

,
s

nE N
   

0

,
p

nN
   

0

,
g

N
   ,

m

n
   

0

,
nN


   '

0

A

nN
   and 

'
0

B
N

A
   with A, B and  given in Eq. (17). 

We can see that in the new non-dimensional immunotherapy-

radiotherapy we have , which is affected by the immune checkpoint blockade, 

and the parameters ' , '  and   which are affected by the treatment with 

continuous radiation. 

 Using the unaffected parameters proposed in Kuznetsov’s original 

paper and introducing the new parameters modified by the continuous radiation 

assumption, we obtain the following unified non-dimensional model’s 

parameter values: 
 

2 0.5;   2

ln 2
;

4
   2 0.3;   0.118;   1.131;   20.19;   0.00311    

 

10.374 9.08 ;  3   d     ' 2(0.141 )
1.635 ;

0.1101

d



      

'

2

0.00036(1 0.3 )

0.18 (0.141 )

d

d




 


  
     (19) 

 

After running the modified program 2 in Matlab, we analyze the 

bifurcation diagrams which can describe stationary states and their stability for 

different values of 1 and 2 parameters and we can see that they still behave in 

the same manner. 
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Fig. 6 ‒ Bifurcation diagram for 1 = 0.0005, 2 = 0.15 and d = 0.5. 
 

 

Fig. 7 ‒ Bifurcation diagram for 1 = 0.005, 2 = 0.15 and d = 0.6. 

 

For a better understanding of the behavior predicted by Eqs. (18), we 

qualitatively characterized different regions of behavior according to the 

action coefficients of radiotherapy on tumor cells and on immune cells. These 

results are shown in Tables 1 and 4. The values for 1 and 2 coefficients are 

derived from the literature and clinical trials, where 1 represents the 

radiotherapy action factor on effector immune cells and 2 is the effect of 

radiotherapy on tumoral cells. 

We want to find the behavior of the system for different values of the 

parameter in the treatment with radiation. This can be done using the MATLAB 

script: Program 4. 
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Table 1 

Therapeutic Diagram for 1 = 0.0005; 2 = 0.15 and 

 d = (0-0.5) BS – Boundary of Separation 

 

 
The variable x is the non-dimensional effector cell population and y the 

non-dimensional tumor cell population. 

For the 1, 2 values estimated, it is noticed that for a value of dose d  0.5, 

the state of the system becomes stable. This steady state is characterized by a 

relatively low TC (tumor cells) level and we refer to it as the “dormant tumor” 

steady state. Dormant states presumed that lethal tumor cells do not grow or 

they are growing at a slow rate during dormancy. This state appears after a 

radical treatment of a tumor. For the same initial conditions, the treatment 

curves running above the boundary of separation (BS) indicate that the tumor 

doesn’t respond to radiation, and the treatment curves below BS, asymptotically 

approach the dormant tumor steady state. Thus the model is capable to explain 

both tumor dormancy and radio resistance.  
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The basin of attraction depends on the amount of immunotherapeutic 

medicine administered and the delivered dose of radiation. 

In the next tables we delineate the parameter regimes in which these 

behaviors can be expected. 

 
Table 2 

Therapeutic Diagram for 1 = 0.0005; 2 = 0.1 and d = (0-0.8) 
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Table 3 

Therapeutic Diagram for 1 = 0.005; 2 = 0.1 and d = (0-0.8) 

 

 
 

In Tables 2 and 3, one can see for any radiation dose, the state of the 

system does not become stable. 
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Table 4 

Therapeutic Diagram for 1 = 0.005; 2 = 0.15 and d = (0-0.6) 

 
 

 
Fig. 5 ‒ Diagram of results obtained from variations of parameters 1 and 2. 

 
Depending on the values of the coefficients 1 and 2, we can reduce 

the tumor to the subclinical stage, i.e. the healing process is irreversible, or we 

can reduce the size of the tumor only temporarily. 
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5. Conclusions 

  

We started from a non-linear quantitative dynamic tumor model for the 

interaction between effector cells and tumor cells proposed by Kuznetsov. The 

model investigates the tumor response to anti-PD-1/PD-L1 or anti-CTLA4 

therapies. 

We proposed the introduction of radiation therapy within this 

quantitative model through both-destruction, repair and repopulation functions 

of tumor cells as well as some terms with destructive and/or inhibitory action on 

immune cells. 

The new immunotherapy-radiotherapy system, obtained by us with 

simple algebraic manipulation, has the same shape as the original Kuznetsov 

model, modifying the parameters a, b and d0 (Eq. (17)). 

From the literature, we used some programs written in MATLAB and 

modified them for the purpose of our analysis (see annexes). After running this 

programs we obtained the therapeutic diagrams (Tables 1-4). 

Using realistic values of parameters (Fig. 5), there appears to be a 

synergism between the immune-stimulatory phenomena and the radio-

sensitivity of the tumor growth. According to our findings there are two types of 

behavior, the inactive state (“dormancy”) and the radio-resistant state. From the 

results of the concurrent action of immunotherapy and radiation, we can see that 

tumor reduction at the subclinical stage (irreversible healing process) is possible 

only for a well-defined parameter interval 1 and 2. 

From Fig. 5, we conclude that for the estimated parameters 1 and 2 at 

the values (0.0005; 0.005) and respectively 0.15, we achieved a positive 

therapeutic response, acting concurrently with immunotherapeutic drug and 

continuous radiation. In both cases, the value of the radiation dose, d, after 

which the system passes the separation barrier and becomes stable is in the 

range (0.5 - 0.6). 
 

APPENDIX - according to (https://computecancer.wordpress.com) with some modifications 
 

“PROGRAM 1 

%% DEFINING MODEL PARAMETERS 

sigma = 0.118; rho = 1.131; eta = 20.19; mu = 0.00311; 

delta = 0.374; alpha = 1.636; beta = 0.002; 

 

%% DEFINING THE MODEL (INLINE FUNCTION) 

rhs = @(t,x)([sigma+rho*x(1,:).*x(2,:)./(eta+x(2,:))-

mu*x(1,:).*x(2,:)-delta*x(1,:);... 

alpha*x(2,:).*(1-beta*x(2,:))-x(1,:).*x(2,:)]); 

 

%% FUNCTION RETURNING MODEL SOLUTION ON [0,100] FOR GIVEN 

INITIAL CONDITION 

https://computecancer.wordpress.com/
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solve = @(init)(ode45(rhs,[0 100],init)); 

 

%% EVALUATING THE VECTOR FIELD IN [0, 3.5]x[0, 450] 

Npoints = 30; 

x = linspace(0.,3.5,Npoints); 

y = linspace(0,450,Npoints); 

dx = x(2)-x(1); 

dy = y(2)-y(1); 

[X, Y] = meshgrid(x,y); 

G = rhs([],[reshape(X,1,[]); reshape(Y,1,[])]); 

U = reshape(G(1,:),Npoints,Npoints); 

V = reshape(G(2,:),Npoints,Npoints)*dx/dy; 

N = sqrt(U.^2+V.^2); 

U = U./N; V = V./N; 

 

%% EVALUATING MODEL SOLUTIONS FOR DIFFERENT INITIAL 

CONDITIONS 

initCond = [0, 2.58; 0, 1; 0, 0.1; 0, 20; 0.76, 267.8;... 

0.755, 267.8; 1.055, 450; 0.6, 450; 2.1, 450]; 

sols = cell(1,size(initCond,1)); 

for i = 1:size(initCond,1) 

sols{i} = solve(initCond(i,:)); 

end 

 

%% PLOTTING THE RESULTS 

figure(1) 

clf 

hold on 

[X1, Y1] = meshgrid(0:Npoints-1,0:Npoints-1); 

q = quiver(X1,Y1,U,V); %plotting vector field 

q.Color = 'red'; 

q.AutoScaleFactor = 0.75; 

for i = 1:length(sols) %plotting each solution 

plot(sols{i}.y(1,:)/max(x)*(Npoints-

1),sols{i}.y(2,:)/max(y)*(Npoints-1),'k') 

end 

hold off ” 

 
“PROGRAM 2 
%% DEFINING MODEL PARAMETERS 

sigma = 0.118; rho = 1.131; eta = 20.19; mu = 0.00311; 

delta = 0.374; alpha = 1.636; beta = 0.002; 

%% DEFINING FUNCTION RETURNING JACOBIAN MATRIX FOR GIVEN 

x,y AND mu 

J = @(x,y,mu)([rho*y/(eta+y)-mu*y-delta, -

mu*x+rho*eta*x/(eta+y)^2 ; ... 

-y, alpha*(1-2*beta*y)-x]); 
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%% DEFINING POLYNOMIAL COEFFICIENTS FOR DIFFERENT MU 

C = @(mu)( [mu*beta; -mu+beta*(eta*mu+delta-rho); ... 

sigma/alpha+rho-eta*mu-delta+beta*delta*eta; ... 

eta*(sigma/alpha-delta)]); 

 

%% PLOTTING BIFFURCATION DIAGRAM 

muMesh = linspace(0,5*mu,100); %mesh for mu 

figure(1) 

clf 

hold on 

for mu = muMesh 

StStatesY = roots(C(mu)); %solving W(y) = 0; 

StStatesY(imag(StStatesY) ~=0) = []; %deleting complex 

roots 

StStatesY(StStatesY < 0) = []; %deleting negative roots 

StStatesX = alpha*(1-beta*StStatesY); %calculating x 

coordinate 

indx = StStatesX < 0; 

StStatesX(indx) = []; %deleting steady states with negative 

x 

StStatesY(indx) = []; %deleting steady states with negative 

x 

for i = 1:length(StStatesY) %evaluating stability and 

plotting 

Jeval = J(StStatesX(i), StStatesY(i), mu); 

if all(real(eig(Jeval))< 0) %point is stable 

plot(mu,StStatesY(i),'r.'); 

else 

plot(mu,StStatesY(i),'k.'); 

end 

end 

plot(mu, 0,'k.'); %always unstable semi-trivial steady 

state 

end 

hold off ” 

 

“PROGRAM 3 

%% DEFINING MODEL PARAMETERS 

sigma = 0.118; rho = 1.131; eta = 20.19; mu = 0.00311; 

delta = 0.374; alpha = 1.636; beta = 0.002; 

 

%% CALCULATING BIGGEST VALUE OF STEADY STATE FOR Y 

Smax = max(roots([mu*beta; -mu+beta*(eta*mu+delta-rho); ... 

sigma/alpha+rho-eta*mu-delta+beta*delta*eta; ... 

eta*(sigma/alpha-delta)])); 
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%% DEFINING THE MODEL (INLINE FUNCTION) 

rhs = @(t,x)([sigma+rho*x(1,:).*x(2,:)./(eta+x(2,:))-

mu*x(1,:).*x(2,:)-delta*x(1,:);... 

alpha*x(2,:).*(1-beta*x(2,:))-x(1,:).*x(2,:)]); 

 

%% FUNCTION RETURNING MODEL SOLUTION ON [0,100] FOR GIVEN 

INITIAL CONDITION 

solve = @(init)(ode45(rhs,[0 100],init)); 

 

 

%% CALCULATING LOWER PART OF THE SEPARATING CURVE 

yInit = 50; %initial value 

yTol = 1e-5; %tolerance 

dy = 5; %initial step size 

 

while dy > yTol 

sol = solve([0 yInit]); 

if abs(sol.y(2,end)-Smax) < 30 %reached maximal steady 

state  

yInitPrev = yInit;  

yInit = yInit-dy;  

else  

dy = dy/2;  

yInit = yInitPrev;  

end  

end  

 

%% CALCULATING UPPER PART OF THE SEPARATING CURVE  

xInit = 0.5; %initial value  

xTol = 1e-5; %tolerance 

dx = 0.5; %initial step size  

while dx > xTol 

sol = solve([xInit Smax+100]); 

if abs(sol.y(2,end)-Smax) < 30  

xInitPrev = xInit; 

xInit = xInit+dx; 

else  

dx = dx/2;  

xInit = xInitPrev;  

end  

end  

 

%% CALCULATING THE FINAL CURVE  

sol2 = solve([0 yInit]); 

sol1 = solve([xInit Smax+100]); 

sol1.y = sol1.y(:,1:find(diff(sol1.y(2,:))> 0,1,'first')); 

sol2.y = sol2.y(:,1:find(diff(sol2.y(1,:))< 0,1,'first')); 
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curve.x = [sol2.y(1,:) sol1.y(1,end:-1:1) ]; 

curve.y = [sol2.y(2,:) sol1.y(2,end:-1:1) ]; 

 

%% PLOTTING 

figure(1) 

clf 

plot(curve.x, curve.y) 

function sol = solveKuznetsovNondimensionalBasins( par, 

Tmax, init, curve ) 

init = init(:); 

opts = odeset('RelTol',1e-8,'AbsTol',1e-8,'Events',@stops); 

sol = ode45(@odesystem, [0 Tmax],init,opts); 

function y = odesystem(~,x) 

y = zeros(2,1); 

y(1) = par.sigma+par.rho*x(1).*x(2)./(par.eta+x(2))-

par.mu*x(1).*x(2)-par.delta*x(1); 

y(2) = par.alpha*x(2).*(1-par.beta*x(2))-x(1).*x(2); 

end 

function [value,isterminal,direction] = stops(~,y) 

value = y(2)-int erp1(curve.x, curve.y, y(1)); 

isterminal = 1; % Stop the integration 

direction = 0; % Any direction 

end 

end ” 

 
“PROGRAM 4 
%% DEFINING MODEL PARAMETERS 

sigma = 0.118; rho = 1.131; eta = 20.19; mu = 0.00311; 

delta = 0.374; alpha = 1.636; beta = 0.002; 

 

%% CALCULATING BIGGEST VALUE OF STEADY STATE FOR Y 

Smax = max(roots([mu*beta; -mu+beta*(eta*mu+delta-rho); ... 

sigma/alpha+rho-eta*mu-delta+beta*delta*eta; ... 

eta*(sigma/alpha-delta)])); 

 

%% DEFINING THE MODEL (INLINE FUNCTION) 

rhs = @(t,x)([sigma+rho*x(1,:).*x(2,:)./(eta+x(2,:))-

mu*x(1,:).*x(2,:)-delta*x(1,:);... 

alpha*x(2,:).*(1-beta*x(2,:))-x(1,:).*x(2,:)]); 

 

%% FUNCTION RETURNING MODEL SOLUTION ON [0,100] FOR GIVEN 

INITIAL CONDITION 

solve = @(init)(ode45(rhs,[0 100],init)); 

 

%% CALCULATING LOWER PART OF THE SEPARATING CURVE 

yInit = 50; %initial value 

yTol = 1e-5; %tolerance 
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dy = 5; %initial step size 

while dy > yTol 

sol = solve([0 yInit]); 

if abs(sol.y(2,end)-Smax)< 30 %reached maximal steady state  

yInitPrev = yInit; 

   yInit = yInit-dy; 

else 

   dy = dy/2; 

   yInit = yInitPrev; 

end 

end 

 
%% CALCULATING UPPER PART OF THE SEPARATING CURVE  

xInit = 0.5; %initial value  

xTol = 1e-5; %tolerance  

dx = 0.5; %initial step size  

while dx > xTol 

sol = solve([xInit Smax+100]); 

if abs(sol.y(2,end)-Smax) < 30  

xInitPrev = xInit; 

   xInit = xInit+dx; 

else 

    dx = dx/2; 

    xInit = xInitPrev; 

end 

end 

 
%% CALCULATING THE FINAL CURVE  

sol2 = solve([0 yInit]); 

sol1 = solve([xInit Smax+100]); 

sol1.y = sol1.y(:,1:find(diff(sol1.y(2,:))>0,1,'first')); 

sol2.y = sol2.y(:,1:find(diff(sol2.y(1,:))<0,1,'first')); 

curve.x = [sol2.y(1,:) sol1.y(1,end:-1:1) ]; 

curve.y = [sol2.y(2,:) sol1.y(2,end:-1:1) ]; 

 
%% PLOTTING 

par.sigma = 0.118; par.rho = 1.131; par.eta = 20.19; par.mu 

= 0.00311; 

par.delta = 0.374; par.alpha = 1.636; par.beta = 0.002; 

figure(1) 

clf 

hold on 

plot(curve.x, curve.y) 

sol = solveKuznetsovNondimensionalBasins( par, 100, [0.1 

50], curve ); 

plot(sol.y(1,:), sol.y(2,:)) 

par.mu = 0.00311*0.9; 



Bul. Inst. Polit. Iaşi, Vol. 64 (68), Nr. 4, 2018                                 45 

 

sol = solveKuznetsovNondimensionalBasins( par, 100, [0.1 

50], curve ); 

plot(sol.y(1,:), sol.y(2,:)) 

par.mu = 0.00311*0.7; 

sol = solveKuznetsovNondimensionalBasins( par, 100, [0.1 

50], curve ); 

plot(sol.y(1,:), sol.y(2,:)) 

disp(['Crossing point: ' num2str(sol.x(end))]) 

par.mu = 0.00311*0.4; 

sol = solveKuznetsovNondimensionalBasins( par, 100, [0.1 

50], curve ); 

plot(sol.y(1,:), sol.y(2,:)) 

disp(['Crossing point: ' num2str(sol.x(end))]) 

hold off ” 
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UN MODEL MATEMATIC CARE COMBINĂ DINAMICA 

TUMORĂ-SISTEM IMUNITAR CU  

RADIOTERAPIA ȘI ILUSTREAZĂ UN SINERGISM POTENȚIAL  

 

(Rezumat) 

 

Folosind dinamica neliniară a tumorilor imunogene, A. Kuznetsov a propus un 

model cantitativ pentru interacțiunea dintre celulele efectoare și celulele tumorale. 

Adăugând radioterapia la modelul inițial al lui Kuznetsov, obținem un sistem care ia în 

considerare atât distrugerea, reparația și repopularea celulelor tumorale, cât și 

distrugerea și inhibarea celulelor imune. Valorile pentru coeficienții 1 și 2 sunt 

derivate din literatura de specialitate și din studiile clinice, unde 1 reprezintă factorul 

de acțiune al radioterapiei asupra celulelor imune efectoare și 2 este efectul 

radioterapiei asupra celulelor tumorale. Folosind Matlab, am obținut diagramele 

terapeutice pentru diferite valori ale parametrilor 1 și 2 și se observă că pentru o gamă 

bine definită a acestor parametri, tumorile sunt reduse la stadiul subclinic. 

 

 

 

https://www.britannica.com/science/T-cell
https://computecancer.wordpress.com/

