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Abstract. Skyrme ansatz, that brought the 2×2 matrices into the nuclear 

realm merely by the idea of isospin, turns out to fill in naturally for one of the 

most important notions left behind by Newton in the definition of central forces. 

Newton definition uses the measurement idea, and takes care of the comparison 

of forces acting on different directions in space. It leaves uncovered what 

happens along the same line in space, an issue that came to fall under the third 

principle of dynamics. The Skyrme ansatz, as a natural completion of the 

Newtonian philosophy is actually the expression of the measurement along the 

same direction. 
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1. The Importance of a Theory of Nuclear Matter 

 

One can safely say that the nuclear matter is the one and only place 

where the matter meets the space in the most direct way that can ever be 

described in the science based on perception of matter by human means. 

Likewise, here is the place of the highest degree of uncontrollability over the 

forces with which we are accustomed in theoretical physics. However, here the 

prevailing treatment of uncontrollability today is done, as a rule, by means 

which Newton left behind in the treatment of force. We mean first the 

collisions, which assure the analogy with the earthly practice, allowing us to 

introduce the forces in the heavenly matters. This is perhaps the deep reason 

why the human spirit found necessary to reinvent the Hertz‟s particle as „parton‟ 

(Feynman, 1969) within the energetic formalism of particle physics. The parton 

model works at very high energies, where the partons can be considered almost 

free with respect to each other – of course, with a specific understanding of 

freedom through a Feynman diagram – in the structure of a nucleon (see also 

(Drell, 1970)). 

 Here, in discussing the structure of nuclear components, the tough 

problem of deconfinement is heatedly debated even today, a half-century after it 

was initiated (Drell, 1977) for a clear early presentation of the idea of 

confinement and deconfinement). The first point at issue is that the quarks – the 

hypothetical fundamental constituents of the nuclear matter – cannot be free: 

they are confined inside nuclear matter with forces of a magnitude increasing 

with the distance from the center of nucleus. They can be „deconfined‟ in some 

extreme conditions involving our ideas of ideal gas and hot plasmas (Satz, 

1986), existing only in hypothetical stars or hypothetical cosmogonic events. 

The same goes obviously for partons, so that it is not at all a rare occurrence, in 

theoretical physics today, the question if quarks are partons or vice versa. 

 Inasmuch as the elucidation of the problem of deconfinement is thought 

as a thermodynamical problem, one can say that it will never get a definite 

answer: the thermodynamics, per se, does not qualify for a principle (Mazilu 

and Agop, 2012), regardless of the fact that deconfinement refers to quarks, 

partons, or even to any other conceivable components of the nucleus. This 

should have been even intuitively obvious: a solid body can go into liquid, and 

further into gas, by raising the temperature. We can understand this, and explain 

it, by inventing some forces of the van der Waals type, for these work here 

exactly as they were supposed to work in the first place (van der Waals, 1899): 

for extended material points. However, we are not able to understand 

completely how, continuing to raise the temperature, the gas can go into a 

plasma. This would require, first and foremost, Newtonian forces, and the 

thermodynamics cannot properly account for them. They were eliminated from 

the thermodynamics of ideal gases simply because the laws of these were 
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extracted based on experiments in which the natural state is an externally 

confined one. One may say that the confinement issue has occurred in the 

nuclear realm strictly because here the laws of thermodynamics do not work 

anymore: for thermodynamics the confinement is implicit in the very definition 

of the temperature, and it is this one which needs primarily a careful revision. 

 But we might digress here for a long while, because the main issue is 

not a thermodynamical one, but purely philosophical if we may say so: the 

partons and quarks are never the same! The partons are those that may be taken 

as equivalent to the molecules of a gas, while the quarks are formal things 

accounting for the statistics of the „inter-partonic forces‟ and described by a 

gauge theory of the kind we presented above. Let us elaborate on this issue. 

 The idea here is that today‟s partons are the direct relatives of old Hertz 

particles. They are always related by forces – more precisely, central forces – 

and we can say that the modern theoretical physics just found a way to look at 

them as if they were free. However, if we are to look at them as belonging to 

nuclear matter, then the harmonic maps are involved, and therefore the relative 

coordinates of these particles within nuclear space are harmonic coordinates, 

equivalent with forces. One can describe the confinement as a fundamental 

aspect of matter, but only in terms of partons (or Hertz‟s particles), in the 

following way. 

 The relative coordinates of the particles inside nucleus are equivalent to 

forces, elastic at first. This statement can be even reinforced by the observation 

that such forces should be somehow tied up with the metric of the ambient 

space, and they are indeed: they can be presented as Killing vectors of the 

Euclidean metric. But there is more to it: at a certain scale, these forces need to 

be described as stresses, leading to the idea of gauge as it was presented in 

(Mazilu and Agop, 2012). Which brings us to the suggestion of a description of 

matter in the manner from (Mazilu and Agop, 2012), taking again the gauge 

theory of light as a guide. 

 Indeed, the constitutive relations from (Mazilu and Agop, 2012) are 

only particular cases of the natural relations between the roots of two cubic 

equations. These are homographies, and the group relating two cubics is the 

Baker‟s group (Burnside and Panton, 1960; Mazilu and Agop, 2012). The 

constitutive relations as written in terms of eigenvalues, for instance (Mazilu 

and Agop, 2012), are only special case of homographies, whereby the 

transformation parameters are small. This is the circumstance that allowed the 

description of ether in vacuum as a special kind of matter, in a Witten-type 

ansatz. As we have seen, it turns out to be a fair description of light, from an 

electromagnetic point of view, as expected. 

 Now, the confinement of particles (partons) should be expected as a 

special property of matter, but the quadratic approximation of the constitutive 

law does not allow it: there is not a vertical or horizontal asymptote of that law. 

However, the homography has such a property, by its very definition, so that we 
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can accept such a function as a constitutive law inside the matter, and so much 

more in the nucleus. From this point of view, the Manton geometrization allows 

for a general expression of the Skyrme principle, with algebraically 

homogeneous functional. This will be now briefly described. 

 The quadric is the starting point of Dan Barbilian in the construction of 

the Riemann spaces associated with families of one-parameter cubics, as 

Cayley-Klein spaces (Barbilian, 1938; Mazilu and Agop, 2012). The 

geometrical procedure used by Barbilian will be now discussed in broad lines, 

but with a special physical interpretation coping with the modern idea of gluons. 

First, we need to notice that Barbilian begins with the idea that the starting 

quadratic form is the Hessian of a cubic with real roots, therefore it has complex 

roots. Then, by performing the linear transformation of homogeneous 

coordinates 
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we can reduce the quadric to a „canonical‟ form 
 

 0XXXX
2130
   

 

showing explicitly that we have to deal with a one-sheeted real hyperboloid. 

Using now the Barbilian form of the roots of a cubic, one can show that the set 

of all cubics having real roots is isomorphic with an ensemble of the oscillators 

having the same frequency. 

First, a 2×2 matrix representation of a cubic is obvious even from the 

Barbilian form of the solutions of a cubic with real roots. Indeed, the same 

transformation is applied to the „fixed point‟, i.e. the triplet (1, ε, ε
2
), to get the 

„current point‟, i.e. the triplet (x1, x2, x3). Therefore the cubic having these roots 

can be faithfully represented by that transformation, which can be represented 

as a point in space, representing either a cubic equation or a 2×2 matrix, or both 

at once, as the case may occur: 
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Even though this is not a real matrix, it can be framed in the geometry 

discussed in (Mazilu and Agop, 2012). In fact, it can be shown that this 

representation is in close connection with the Iwasawa decomposition of a 2×2 
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real matrix. Thus, the Cayley-Klein (absolute) metric of this representation is 

the Barbilian metric given by 
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where h and h
*
 are the roots of the Hessian and k is an arbitrary complex factor 

of unit modulus. This metric is also characteristic to a genuine characterization 

of an ensemble of oscillators, starting from their classical description by the 

solutions of a second order differential equation. 

The second order differential equation characterizing a classical damped 

harmonic oscillator, can be written as 
 

 0KqqR2qM    (3) 

 

with obvious notation for first and second derivatives of the relevant coordinate 

q. The solutions of Eq. (3) form a two-dimensional manifold depending on 

three arbitrary parameters. They can be written in the form 

 

     RM,RMKM);ehhe(e)t(q 222titit  
 (4) 

 

Therefore, the solutions represent an ensemble of oscillators of the same 

frequency, in which the element is identified by three parameters h, h* and e
i
. 

Having the experience of the blackbody radiation, one might say that the 

frequency is somehow statistically related to this ensemble of oscillators, the 

same way the temperature is related to the kinetic energy, assuming of course 

that it is possible to find such a statistic. This statement can even be made more 

precise from algebraical point of view. 

Indeed, the ratio of any two linearly independent solutions of the 

differential Eq. (3), τ say, is a solution of the following differential equation 

 

   22t,   (5) 

 

where the curly brackets denote the so-called Schwartz derivative of τ with 

respect to time, defined by (Mihăileanu, 1972) 
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This differential expression, and therefore the left-hand side of the Eq. (5) 

along with it, is invariant with respect to the homographic transformation of the 

function, i.e. the ratio of two fundamental solutions of the Eq. (3) 
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with a, b, c, d four real parameters. The set of all transformations (7) 

corresponding to all the possible values of these parameters is obviously the 

group SL(2, R). 

Thus the ensemble of all oscillators of the same frequency is in a one-

to-one correspondence with the transformations of SL(2, R). This allows us to 

construct a „personal‟ parameter τ, so to speak, for each oscillator of the 

ensemble of possible solutions of the classical equation of the harmonic 

oscillator, guided by the form of the general solution of Eq. (5). This solution 

can indeed be written as 

 )ttan(vu   (8) 
 

where u, v and  are constants, characterizing a given oscillator from the 

ensemble as before. Identifying the phase from (8) with that from (4), we can 

write the „personal‟ parameter of an oscillator in the form 
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This equation reveals the Barbilian form of the roots of a cubic 

equation, so our results can be summarized as follows: 

1) each oscillator represents a family of cubic equations depending on time 

2) the initial conditions of the oscillator – the amplitudes – are given by 

the roots of the Hessian of the cubic family. 

In physical terms this means that the ensemble of oscillators represents 

a family of matrices giving a measured field. The physical quantities accessible 

to measurement are the normal and shear components of the field. The time of 

physical evolution of the field is given by the phase angle of orientation of the 

octahedral vector in the local octahedral plane. 

Thus, the ensemble of initial conditions of the oscillators corresponding 

to the same frequency can be organized as a geometry of the hyperbolic plane in 

the representation of Poincaré (Mazilu and Agop, 2012). Therefore, these 

oscillators correspond to a situation where their initial conditions can be chosen 

from among the points of a hyperbolic plane. One such situation is that of the 

Kepler motion representing an atom. Therefore, these oscillators are related to 

the structure of the nucleus, and with the stresses inside nucleus. In other words, 

the general constitutive law enforces naturally by the representation of stresses 

and strains represented as 3×3 matrices has a dynamical interpretation in terms 

of oscillators. 
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The metric (2) offers now a natural posibility of extension of the 

harmonic principle that we associated with a Kepler problem, by a functional 

which in fact represents the deformation of the nuclear matter in the general 

case. The extension amounts to expressing the energy of mapping by the 

functional 
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The variational principle would then express this simple fact: the most 

general deformation of the nuclear matter is replicated in the atomic structure by 

the variation of the eccentricity of the electronic orbits. Likewise, inside 

nucleus, the variation is replicated by an ensemble of harmonic oscillators of the 

same frequency. The second term from this functional (Mazilu and Agop, 2012) 

is analogous to the baryonic term from the theory of Skyrme, with the only 

difference that now the whole functional is homogeneous. In the language of 

skyrmion technology however (Atiyah and Sutcliffe, 2001), it still represents 

hyperbolic skyrmions, because the geometrical character of the problem is 

dictated by the metric from Eq. (2). 

In this form, the theory illustrates the strong ties of the model of nuclear 

matter with the ideas of confinement of matter in general. In order to show this, 

we will present now a solution to the variational principle related to the energy 

functional from Eq. (10). In order to better understand intuitively that solution, 

let us start with a „strange‟ classical dynamics, the one related to the forces 

involved in the problem of confinement of the classical ideal gas (Mazilu and 

Agop, 2012), of magnitude inversely proportional with the distance between 

molecules. This force is also involved in a Newtonian description of the inertia 

(Sciama, 1969) which, again should appear as quite natural in view of the 

common background of the general relativity and Skyrme theory (Mazilu and 

Agop, 2012). 

Assuming a Newtonian dynamics for this force, the equations of motion 

can be written in the form 
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This is a plane motion, because the force is central. In polar coordinates 

of the plane of motion, the equations of motion splits into the system of two 

differential equations 
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The second of these gives the area constant: 
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The first Eq. (11) can then be integrated as follows (Govinder et al., 

1993): first change the time variable into 
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where the prime represents differentiation with respect to τ. Now, if we change 

the dependent variable into r/1)(  , the first Eq. (11) becomes 
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This is the equation of a harmonic oscillator, with the frequency 

dictated by the rate of area, leading to either trigonometric or hyperbolic 

functions. We consider only the first case, when the solutions are of the form 
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Now we can find the relation between the Newtonian time and the new 

time τ. Indeed taking Eq. (14) into Eq. (12) gives 
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and this integral leads to (Gradshteyn and Ryzhik, 1994) 
 

  t)BA(tan 221

0
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where 0 is a constant of integration. Interestingly enough, Eq. (14) represents a 

particular Kepler motion, corresponding to null gravitational constant, or null 

mass, or even null charge as it were. It cannot be therefore interpreted in terms 

of the motion of a material point around another attracting material point. 

However, it can be interpreted in terms of an abstract kinematics, suggested by 

the analogy between Eq. (16) and the solution (8) of the Schwartzian equation, 

which can be interpreted as the eigenvalue of a stress matrix. 

Consider indeed the kinematics generated by differential forms from 

(Mazilu and Agop, 2012). In terms of these the metric (2) assumes the 

Lorentzian form. Along the geodesics of this metric the rates represented by the 

above-mentioned differential forms are constant, so that we can find those 
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geodesics from some differential equations involving a parameter linear in the 

arclength from Eq. (2). These are 
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with a, b and c some constants. The last two of these equations give 
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and then from the first of (17) we have 
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an equation which can be integrated right away. We prefer to perform this 

integration by putting the right-hand side of (19) in the form of a perfect square, 

in order to show that this corresponds to the Eq. (15) above. Indeed, if we take 

2Ωτ ≡ , we can write the integral in the form (16) for a, b, c given by 
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This gives an interpretation to the classical „time‟ variable τ, provided 

we know something about this abstract kinematics. Insofar as the parameters u 

and v are concerned, using Eq. (18) we have 
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where v0 is another integration constant. Therefore, v represents the inverse 

square of the position vector of the motion previously described. On the other 

hand, for the parameter u we find the following solution 

 

  coscsinb)uu(v
00  (22) 

 

where u0 is another constant of integration. 

One can find now a particular solution of the variational principle 

applied to the energy functional (10) along the geodesics given by Eqs. (21) and 

(22), if we assume that their parameter (and therefore the phase ) is a solution 

of the Laplace equation. This can be proved, the easiest way, by continuing to 
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work in real parameters u, v and  as before. The Euler-Lagrange equations 

associated with the variational principle applied to (10) are: 
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On the other hand, the geodesics of the metric (2) are solutions of the 

system of differential equations: 
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where the prime means differentiation with respect to the parameter of 

geodesics. Now, if the functions u, v and  depend on position only through the 

parameter of geodesics, the Eqs. (23) can be written in the form 
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The first terms of these equations are zero as a consequence of the 

equations of geodesics. So, we have still another form of the harmonic 

principle: in fairly general conditions, the harmonic mapping corresponding to 

energy (10) is given by the geodesics of the metric, provided their parameter is 

a regular harmonic function. This of course makes the phase  the arctangent of 

such a function, in view of the Eq. (19) above. 

Therefore, at least in this particular instance, we have to focus on the 

geodesics of the metric (2). The Killing vectors of the metric represent 

conservation laws, and thus the parameters a, b, c from Eqs. (21) and (22) 

represent are expression of these conservation laws. The Eqs. (21) and (22) 

themselves represent two Kepler motions, and by this we are certainly in 

position to know exactly the field of application of the above kinematics: it is 

the theory of space stresses, involved in the Kepler problem. These stresses are 

induced in the core of the solar system for instance, or in the nucleus, and they 

represent a material point – in the sense of Hertz – whose particles, acted upon 

by the inverses of the space elastic forces, behave like an ideal gas. The density 

of this material point varies inversely proportional with the square of distance 

from the origin of the reference frame, which is actually its origin. We have to 

insist upon these two aspects of the problem of action at distance, for they are 

instrumental in understanding how the nucleus works. 
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It is well-known that one of the first theories of nuclear matter was that 

of a gas model (Fermi, 1950). It was not so successful, but certainly touched a 

fundamental aspect of the problem of structure of nuclear matter, which turns 

out to be actually the fundamental problem regarding the structure of the matter 

in general. In view of the discussion above, we may assume the following 

scenario: the particles of nucleus are decided „in pairs‟ by the inversion 

transformation between external Newtonian forces and the forces, internal to the 

nucleus, of confinement. These last ones are represented as harmonic oscillators 

– gluons as it were – and described by a general dynamics. The kinematics of a 

pair is represented as two Kepler motions given by Eqs. (21) and (22) above. 

Here, of course, we assume that the pair is „accidentally decided‟ by inversion, 

but once decided it is described by an actual state of stress whose kinematics 

can be classically described. This state of stress can be physically characterized 

by a statistics of the kind specifically connected with the light (Mazilu and 

Agop, 2012). 

With the Eqs. (21) and (22) above, we certainly can extend to matter, 

particularly to the nucleus, the Mac Cullagh‟s view about the structure of light 

(Mac Cullagh, 1831). Indeed, the two equations represent two harmonic 

oscillators, as well as two Kepler motions. In classical terms, one can say that 

two particles (partons) inside nucleus have independent motions of a Kepler 

kind. Even though classically described, such an image should be statistically 

accessible to measurement through some kind of stresses or strains, and 

reflected in the eccentricity of electronic orbits. 

This image of the structure of the nucleus can be made even more 

precise, from the very classical point of view we advocate in this work. Indeed, 

inasmuch as we are thinking in the framework of the Newtonian natural 

philosophy, the above view on the Hertz‟s particles – the partons of nuclear 

matter – recovers, and solves we should say, in a „quantum-mechanical‟ way, 

one of the most important issues of that philosophy, left behind by Newton in 

his theory of forces. 

 

2. Newtonian Foundation of Skyrme Ansatz 

 

According to (Mazilu and Agop, 2012), where it has been shown that 

the classical description of the Kepler motion leaves room for an elegant 

description of the nucleus through the geometry of the hyperbolic plane, in 

terms of eccentricity and orientation of the Kepler orbit. More to the point, if we 

express the complex number h, representing the asymptotic direction of the 

orbit, as a function of the eccentricity e of the orbit and its orientation, α say, 

then the absolute metric obtained as a result of the constraint which expresses 

that the Kepler orbit is a closed conic section, is given by 
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  tanhe;)d(sinh)d()ds( 2222
 (25) 

 

The angle α gives the orientation of the orbit in its plane with respect 

to an arbitrary direction. If ψ is a regular harmonic function in space, then 

the complex number h gives a mapping from space to the hyperbolic plane. 

Therefore, if the nucleus is made of Hertz particles and we identify the 

harmonic coordinates of these particles with the forces between them 

(Mazilu and Agop, 2012), then the eccentricity of this orbit is a physical 

expression of the statistics of intranuclear forces between constituent 

particles of nucleus. 

The metric (25) is also the metric of a section of hyperbolic space, used 

by Atiyah and Sutcliffe, for instance, in the construction of hyperbolic 

skyrmions. The form of this metric is, in general 
 

 )dsind(sinh)d()ds( 222222   (26) 
 

where θ and ϕ are usual spherical polar angles. Obviously, (25) can be obtained 

from (26) if we agree that α represents the geodesic arc on the unit sphere. But, 

as it was shown in (Mazilu and Agop, 2012), Eq. (26) is also the absolute metric 

of the space of relativistic velocities (the Fock metric) and probably there are 

still many meanings of it, of which one is of a particular cosmological interest. 

It is indeed, worth mentioning the fact that, if it is to be applied to the 

interior of atomic nucleus, the theory of gravitation in its Einsteinian form can 

only refer to a cosmology. More than this, this cosmology has to be spatially 

homogeneous, in the sense of existence of a transitive group describing it. Now, 

inasmuch as this homogeneity involves a three-parameter group, with the 

structure of Barbilian group, the homogeneous space should be of the Bianchi 

type VIII in the language developed by cosmologists (Bianchi, 2001; Taub, 

1951). Consequently the metric from Eq. (2) above, must have some obvious 

connections with the metric of some spatially homogeneous cosmologies. One 

such cosmology aiming explicitly to the introduction of the material points in 

the form of galaxies, is the Gödel‟s cosmology, taking into consideration the 

nonzero density of matter by a cosmological term in Einstein‟s equations 

(Gödel, 1949; Gödel, 1952). The metric of such a space time is given by 
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with the usual relativistic notation taking x0 as the time coordinate and x1,2,3 as 

space coordinates. One can see that the section with constant x3 of this space-

time has a metric almost identical with the metric from Eq. (2). In fact it can be 

written in the form given in Eq. (2) by a transformation which offers „physical 

meaning‟, so to speak, to time and plane coordinates: 
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Here we used our usual notation, h ≡ u + iv, k ≡ e
i
. Rotating 

cosmologies carry the particular significance of an universe in motion, but with 

important proviso that the time is given by this motion, it is not a priori 

parameter. In this specific case, one can say that Gödel cosmology, when 

applied to „nuclear universe‟, gives a dynamic explanation of this universe in 

terms of the classical motions of its particles. We like to point out that this 

„dynamic explanation‟ can be done in terms of Kepler motions as geodesics of 

the Barbilian metric – Eqs. (21) and (22) above. In fact this might justify the 

point of view that the Barbilian space is a phase space for the Kepler motion in 

general. In the case of Kepler motion the velocity vector follows a circle while 

the moving body follows the conic describing the motion (Milnor, 1983). One 

can assume that, in general, the dynamics of the motion is described in a phase 

space and the trajectories are represented by two conics. If the Eq. (21) 

represents a conic: 

 
 sinccosba

r

1
 (29) 

 

then this radial motion has a speed given by 
 

  coscsinbr  (30) 

 

in view of the time transformation from Eq. (12). Here the time derivative of the 

radial coordinate is taken with respect to the very time of the motion, as it 

should be. Eliminating the angle between Eqs. (29) and (30), one can even get a 

conservation law. This simple fact shows that, the radial component of the 

Kepler motion is actually of the same nature – at least from an algebraic point 

of view – with the free radial motion (Mazilu and Agop, 2012). But there is 

more to this interpretation, even outside the Hamiltonian theory: it touches the 

very essence of the classical Newtonian theory of forces. 

The metric from Eq. (26) can be brought to the form (2), for both are 

metric of constant negative curvature. As shown above, one just needs for this a 

transformation offering physical meaning to coordinates. Now, the fact that 

metric (26) was used in describing the skyrmions with zero mass pions, incites 

us in constructing for it a fundamental skyrmion with distinguished significance 

in the very roots of Newtonian mechanics. For that skyrmion, the Eq. (20) – and 

therefore Eq. (2) – still maintains the meaning of absolute metric (Mazilu and 

Agop, 2012), but this time it is also related to a conservation law. Let us follow 

closely the logic of such a construction, starting even from the Newtonian 

theory of forces. 
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Fact is that Newton‟s definition for the central force, the kind of force 

needed in astronomical researches as well as in the theory of nuclear particles, is 

actually a definition based on the concept of measurement of forces. We 

stressed this idea quite a few times in the present work. It amounts basically to 

the fact that the ratio of magnitudes of forces acting on a planet in different 

directions from the plane of motion, but determining the very same Keplerian 

orbit, covered in the same time interval, can be recognized in the elements of 

that orbit (Mazilu and Agop, 2012). This is the essential point of the Corollary 3 

of the Proposition VII from Principia, which contains the most general 

definition of the gravitational force, leading to the idea of its „universality‟. 

There is, however, an essential point left uncovered by Newton, and this 

is the problem of mass. He insisted in the proportionality of the central force of 

heavens with the product of the masses involved in interaction, which is quite 

an arbitrary assumption. It is not wrong, by any means – the history proves it – 

but, we should say, incomplete. It was obvious even to Newton himself that in 

order to be logically correct, the hypothesis was quite insufficient as it stood, 

and needed to be amended with „perturbation‟ terms in order to account for the 

fact that the Sun is not fixed, and we do not deal here with material points 

without space expanse (see for details (Popescu, 1988)). Nevertheless, used as 

Newton gave it first, the theory of forces led in a natural way to the equation of 

Poisson (Mazilu and Agop, 2012), which further led to the general relativity. 

Newton‟s principle of measurement compares the forces along two 

different lines from the plane of motion of the planet, in a ratio depending only 

on the geometrical elements of the motion (Mazilu and Agop, 2012). In the long 

run, one might say, let us stress it once more, that his philosophy is simply the 

one saying that the ratios of the forces, acting upon a planet in any two 

directions in plane, are to be read in the planet‟s motion. The force must be 

always central, otherwise in the vector model of forces the orbit is no longer 

plane. In view of todays astronomical knowledge this seems to be quite an ideal 

speculative conclusion, for no motion in the universe seems to be plane. 

However, in the times of Newton the only thing to be taken into consideration 

was the Kepler‟s synthesis of planetary observations, which plainly sustained 

the conclusion of plane motion. This is why we take special precaution of 

talking of Keplerian orbits, whenever we have to discuss the subject of 

Newtonian forces: they are related exclusively to the Keplerian setup of the 

geometry of motion. 

However, Newton‟s hypothesis about masses in the expression of the 

magnitude of forces, aims to describe, and introduce within the concept of 

central force, not what happens along two different lines of action in plane, but 

what happens along the same line of action. In view of the reciprocity of 

gravitational interaction, the action at distance is the same no matter of the point 

of view along its line of action, and it should therefore be characterized by the 

magnitude of the vector of force. Moreover, by the very same token, this 
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magnitude should not depend on the direction of action along the same line. The 

product of masses in the expresion of force is an algebraical monomial 

satisfying this requirement, but so is the sum, or any kind of average for that 

matter, like for instance the reduced mass. Later on, even the equations of 

motion of the classical dynamics led to the conclusion that the masses are only 

convenient coefficients, and their choice is only justified by the simplicity of 

mathematical description (Poincaré, 1897). 

As we see it, the point at issue is very probably the fact that the third 

principle of dynamics is no more actual over the space. If the forces do not act 

in the same point and, moreover if, physically speaking, this point does not 

remain unchanged by them, the forces cannot be compared. In other words, the 

point where forces act should be a Hertz particle. This is hardly the case with 

the matter in general, but even in case it would be such a case the central action 

still needs to be amended. Indeed, the quantity of matter must be essential. 

However, one cannot say that a planet perceives in the Sun the same amount of 

matter that the Sun itself perceives in the planet. In other words, the fact that the 

masses involved in interaction are different should be inherently contained in 

the definition of the very magnitude of forces. 

Then this part of the definition of forces should be taken out of the 

classical vector formalism, which apparently does not allow for a proper 

accomodation of the concept of mass. And it can be taken indeed, by means of a 

quantum definition of the measurement, in the axiomatic manner in which the 

isospin is introduced in the theory of nuclear forces (Rosenfeld, 1948), or the 

spin is introduced in quantum mechanics (Schwartz, 1977). Namely, the 

situation just described is represented by the following hermitian 2×2 matrix 

depending explicitly on the direction in space – vector characteristic – but 

having two eigenvalues equal in magnitude, independent of that direction: 
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This matrix has, indeed, the eigenvalues ±1, or any two real numbers 

equal in magnitude and opposite in sign for that matter. Consequently it can 

represent the masses of two ideal particles along any direction in space, acting 

on each other with a central Newtonian force. Based on matrix (31) we can 

build an ansatz. First notice that any 2×2 matrix of the form 

 

 QEM   (32) 

 

where λ and μ are real, and E is the 2×2 identity matrix, has two different 

eigenvalues not depending on the direction. These are (λ ± μ). The ansatz is 

then exactly the Skyrme ansatz, inasmuch as Eq. (30) can be written in the form 
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The matrix M then represents indeed a skyrmion, because it is referring 

to quantities that characterize the nucleus. First, the absolute metric (Mazilu and 

Agop, 2012) of the matrices (32) or (33) is just the metric from Eq. (26), where 

we only need to take 

 





tanh  (34) 

 

What this representation tells us is that the measurement provides the 

masses (λ ± μ) of two particles in interaction, which they perceive into each 

other through this interaction, and which are independent of the direction (θ, ) 

of the straight line joining them. The formula (34) is then justified by the 

inequality of the masses of the two partners involved in interaction. But this 

does not mean that the masses themselves are independent of the environment 

of the particles inside nucleus. Indeed, in order to represent the nuclear matter, 

ψ needs to be a solution of the Laplace equation over the space occupied by the 

nucleus. This certainly brings analytical dependence of the ratio of masses on 

the whole environment of the line joining the two particles. Moreover, by 

looking at the model presented in (Mazilu and Agop, 2012), ψ must be a force. 

It is hard to see a situation illustrating this idea in the macroworld. 

However let us accept for now that there is such a situation, but we are not yet 

able to see it. For, in the microworld it is, so to speak, a common situation. The 

history of physics plainly illustrates it, which is why we sustain that the Skyrme 

ansatz is actually only a natural finish of the classical natural philosophy of 

forces. Indeed, take the case of proton and electron. In the Rutherford atom, 

described as a classical Kepler motion, they have significantly different masses. 

In this case, we can certainly say that the value of ψ in Eq. (34) is very small, 

the forces are elastic, and so the metric in Eq. (26) is very nearly Euclidean. 

This is why the atom could be described as a Kepler motion or as a harmonic 

oscillator in the first place. This description is legitimate even from the point of 

view of the isospin proper. Indeed, it naturally contains the limit case of 

quantities equal in magnitude and opposite in sign, that the electron and the 

proton perceive into one another in special occasions. This is, of course, the 

case of their charges which, as well-known, are equal in magnitude and of the 

opposed signs. The pairs of equal mass, for instance the proton and antiproton, 

or the electron and positron, are here represented by the limit of very large ψ, 

i.e. of the very small difference of their masses. 

The theory of nuclear forces asks necessarily for a kind of algebraic 

theory of masses, whereby the idea of direction intimately enters the theory (for 

instance in the form of mixing angles). And the above approach shows plainly 

how the notion of direction should work, and where the ratio of masses 
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intervenes. However this idea of richness of the notion of direction, and of its 

direct relation with the ratio of masses is not new, by any means. With specific 

reference to the quantum theory of fundamental Newtonian structures and their 

relation with cosmology and cosmogony, the idea was elaborated to a large 

extent by Eddington (Eddington, 1936; Eddington, 1953). Our only addition 

here is perhaps that the quantum theory has a direct descent from the classical 

Newtonian theory of forces, which it just completes and finishes naturally. The 

Skyrme theory seems to be indeed, the only right addition to that classical 

theory, in the sense of completing it in its very own terms. 

 

3. Conclusions 

 

The main conclusions of the present paper are the following: 

i) Arguments for the importance of a theory of nuclear matter are 

discussed.  

ii) A mathematical model according with Barbilian‟s differential 

geometry is developed. 

iii) By employing this model, a Newtonian foundation of Skyrme ansatz 

is established. 
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FUNDAMENTELE SKYRMIONILOR DE TIP ANSATZ 

 

(Rezumat)  

 

Se arată că teoria lui Skyrme este o alternativă viabilă la Principiile matematice 

ale filosofiei naturii a lui Newton. Într-un asemenea context, direcția și nu distanța 

devine fundamentală în orice proces de măsură, independent de rezoluția de scală. 


