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Abstract. Assuming that the motions of a complex fluid structural units 

take place on fractal curves, non-linear dispersive-type effects are analyzed. It 

results that the transport phenomena in complex fluids are dictated by cnoidal 

oscillation modes, their degeneration implying either periodic-type behaviors, 

quasi-periodic-type behaviors, or solitonic-type behaviors. All of these show the 

complexity of interactions taking place between the complex fluid entities. 
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1. Introduction 

 

The most important aspect of complex systems is that the overall 

interactions of the structural units can dictate the functionalities of the whole 

systems, which individually does not present itself. Complex systems require a 
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substantial energy to sustain their structural and functional behaviors. Even 

some small differences in one component can have significant consequences for 

the evolution of the whole system. Natural complex systems often show a high 

level of robustness due to redundancy in their components and interactions. 

Complex subsystems often combine to create new levels of functionalities. 

Probably the most noteworthy features of complex systems is that the 

evolutions observed in different systems can be defined by the same 

fundamental theory. For instance, the analytic gas reaction on a platinum 

surface (Rotermund et al., 1990), the aggregation of social amoebae (Foerster et 

al., 1988), or the cardiac fibrillation that leads to sudden death (Fenton et al., 

2009) are all well defined by the same theoretical model through similar 

equations. Mathematical models, and new theories need to be further developed 

in such a way that in the end we are able to work with systems that are 

simultaneous sufficiently abstract and detailed so they can be implemented to 

the vast range of natural or artificial systems. These models need to be able to 

described the evolution of the systems at different temporal or spatial scales, the 

self-organization processes different sub systems or of the whole complex 

system, the implications of different the individual histories describing each 

structural unit and the global features of the systems, the appearance of 

phenomena induced by the interactions at different resolutions scales etc. 

Understanding and attempting to control the functional, structural, and 

dynamical properties of complex systems and utilizing them for the unravel of 

basic physical process or the complex behavior of malignant cells can become 

building blocks for the developing of new directions in theoretical physics. 

 

2. Methods 

 

Let us consider the geodesics equation on a fractal manifold free of any 

constraint (Tesloianu et al., 2015). In such conjecture, separating the real part 

from the imaginary one of the velocity field, at the differentiable resolution 

scale, we obtain: 
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and, at the fractal resolution scale: 
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The quantities from (1) and (2) are defined in (Tesloianu et al., 2015). 

For irrotational motions 

 
ˆ = 0, = 0, = 0D F  V V V     (3) 

 

the velocity field takes the form 
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or, explicitly, with  exp iS  , 
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where   is an amplitude and S  a phase. 

 

In such a context, the fractal fluid is incompressible, i.e. const.  , and 

thus Eqs. (1) and (2) take the single form 
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An explicit form of the velocity field 
DV  is obtained for the one-

dimensional case. In dimensionless variables 

 

1 1 1 1, , , DV
t kx M

c
               (7) 

 

the solution of Eq. (6) becomes (for details on the method see (Tesloianu et al., 

2015)) 
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Therefore, the one-dimensional space-time dynamics of the complex 

fluid are given by cnoidal oscillations modes of the normalized velocity field 

(Figs. 1a-c and Figs. 2a-f ). 
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Fig. 1 – Three-dimensional (a) and two-dimensional (b, c) cnoidal 

oscillation modes of a velocity field. 
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Fig. 2 – Fractal behaviors of the normalized velocity field by means of 

 self-similarity. Contour plots for various non-linearity degrees. 

 
In relations (7) and (8)   is a specific pulsation, k is the inverse of a 

specific length, c is a specific velocity, M is the Mach number,   is the average 

value of the normalized velocity field  , a is the amplitude, K(s) and E(s) are 

the complete elliptical integrals of the first and second kind of modulus s (a 

measure of the non-linearity degree) and cn is the Jacobi cnoidal elliptical 

function of modulus s (Armitage and Eberlein, 2006) and argument  0    

with 0 const.   

The cnoidal oscillation modes have the following characteristic 

parameters: 

i) Wave number 
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ii) Phase velocity 
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iii) Quasi-period (Figs. 3a, b) 
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Fig. 3 – Quasi period of the cnoidal oscillation modes versus amplitude and 

 non-linearity degree (a); two-dimensional contour of the quasi-period (b). 

 

The “pure” sequences are obtained through the following degenerations: 

i) For s→0, (8) reduces to harmonic package-type sequence (Fig. 4a) 
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ii) For s→1, (8) reduces to a soliton-package-type sequence (Fig. 4b) 
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phase velocity 

 
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and pulsation 
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For s = 0, (8) reduces to a harmonic type sequence, while for s = 1 to a 

soliton type one (Fig. 4c). 
 

 

 

 
Fig. 4 – Pure sequences obtained through degenerations of cnoidal oscillations modes of 

velocity field: harmonic package – type sequence (a), 

 soliton package – type sequence (b), soliton – type sequence (c). 
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3. Results and Discussions 
 

Natural sequences are generally presented as sequential mixtures: 

harmonic type sequence – harmonic package type sequence, soliton type 

sequence–soliton package type sequence etc. Such situations can be induced if 

we assume the non-linearity s depends on the resolution scale. The diversity of 

these types of oscillations can be experimentally observed (ionic oscillation 

period increases with the decreasing signal amplitude) in (Gurlui et al., 2008; 

Nica et al., 2012; Pompilian et al., 2012). In the case of a harmonic packet 

equation (11) indicates a chirping-type (Cristescu, 2008). 

Eliminating amplitude a between (9) and (10), we obtain the following 

expression: 
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where 

 2 2 2( ) 3 ( ) ( ) 1 ( )A s s K s E s s K s      (21) 

Nonlinearity s generates two distinct flow regimes of the dissipative 

complex fluid: non-quasi-autonomous regime (by harmonic type sequences, 

harmonic package type sequence or harmonic–harmonic package type 

sequence), and quasi-autonomous respectively (by soliton type sequences, 

soliton package type sequences, soliton – soliton package type sequence). The 

dependency A(s) – see Fig. 5, specifies that the value 0.7s   separates the two 

flow regimes. For 0 0.7s  , i.e. in non-quasi-autonomous regime, the variable 

of   const.A s  , situation in which the first relation (20) takes the form 

  26U const        (22) 

while for 0.7 1s  , i.e. in a quasi-autonomous regime, relation (22) loses its 

validity. 

 
 

Fig. 5 – Flows regimes of the complex fluid for different non-linearity degrees. 
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Let us remind that one – dimensional space – time lattices of nonlinear 

oscillators can be associated to cnoidal oscillation modes (Toda lattices (Deift 

and McLaughlin, 1998)). From such a perspective, previous mentioned 

separating regimes can be correlated to the two sequences of the lattices 

spectrum (optic and acoustic). 

 

4. Conclusions 

 

Assuming that the particles movement of a complex fluid take place 

on continuous but non-differentiable curves, the geodesics equations in 

fractal space are obtained. These equations are identified with the stream 

lines of the complex fluid flows, situation in which the local self -

acceleration, the self-convection, the self-dissipation and the self-dispersion 

of complex speed field are in balance in every point of any such line. If the 

dissipative effects are negligible compared to the convective and dispersive 

ones, its flow dynamics are given through space – time cnoidal oscillation 

modes of complex velocity field. 

By means of space – time cnoidal oscillation modes degenerations, it 

results harmonic, harmonic packet, soliton, soliton packet sequences. These 

degenerations have been induced by different non-linearity degrees, degrees 

corresponding to different scale resolutions. The non-linearity degree 0.7 

impose two flow regimes: non-quasi-autonomous regime, characterized by 

harmonic and harmonic packet sequences and quasi-autonomous regime, 

characterized by soliton and soliton packet sequences. We note that nature does 

not operate with the pure sequences mentioned above, but with mixture 

sequences as harmonic – harmonic packet, soliton – soliton packet etc. The self-

similarity of the cnoidal modes specifies the existence of some “cloning” 

mechanisms (full and fractional velocity function – a function which evolves in 

time to a state describable as a collection of spatially distributed sub-velocity-

functions that each closely reproduces the initial velocity-function shape 

(Aronstein and Stroud, 1997). All these show a direct connection between the 

fractal structure of the flow dynamics of complex fluid and holographic 

behaviours (Pricop et al., 2013). 
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COMPORTAMENTE DISPERSIVE ALE FLUIDELOR COMPLEXE PRIN 

INTERMEDIUL NEDIFERENȚIABILITĂȚII 

 

(Rezumat) 

 

În această lucrare, presupunând că dinamicile entităților unui fluid complex au 

loc pe curbe fractale, sunt analizate efecte neliniare de tip dispersive. Rezultă că 

fenomenele de transport în fluidele complexe sunt dictate de moduri cnoidale de 

oscilație, moduri a căror degenerare implică comportamente de tip periodic, de tip 

cvasi-periodic, respectiv de tip soliton-kink.  

 


