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Abstract. By understanding blood as a fluid tissue moving along a 

cylindrical structure with a mucous wall (Taylorian movement of a fluid inside 

another) we can explain with a deterministic mathematical model the 

physiopathological changes and the diversity of effects they have on the 

cardiovascular system. Moreover, by reducing the hologram paradigm from an 

universal scale to a microscopical and molecular scale, we can understand, 

speculatively at this moment, the healing processes as a holographic result, the 

healthy cells from the periphery of the affected area containing all the 

information which is necessary for the reproduction through self-similarity of the 

destroyed cells. 
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1. Introduction 

 

In the following we want to present the implications of fractality in the 

circulatory system (Tesloianu, 2014): 

‒ non-linear dynamics and chaos theory can be employed to approach 

phenomena that cannot be explained through classical mechanics, real world 

needing, for a description based on mathematical modelling, formulas that are 

adapted to the continuous changes that occurs as result of complex biological 

phenomena; we will accept and define a real component and a “virtual” one 

(that can be activated depending on the conditions at a certain moment), the best 

example in these case being the development of collateral circulation in the 

presence of a hemodynamically significant and long-lasting vascular stenosis, a 

type of circulation developed in existing but unused vessels – “virtual” - which 

are activated when needed.  

‒ a non-linear object looks different depending on the resolution scale at 

which it is observed; thus, the complexity profile is imposed in correlation with 

the resolution scale at which observation is made. 

‒ sensibility to initial conditions (Tesloianu et al., 2015): if, for 

predictable systems, a small perturbation of the initial state of the system 

generates a small change of its final state, in the case of chaotic systems, 

particularly biological ones, small perturbations can lead to divergent and 

unpredictable states, the  “butterfly effect” being a well-known example in this 

sense. In 1963 Edward Lorentz was the first meteorologist who gave a logical 

explanation to the fact that meteorological predictions are only probable and 

never certain: according to him, the concept being developed and confirmed by 

other researchers too, the wing-beating of a butterfly in Europe can cause a 

tornado in America in certain given circumstances, that are basically impossible 

to predict accurately, respecting meteorological models; 

‒ differences in the applicability of the superposition principle 

(Tesloianu et al., 2015): in a linear system the resulting effect of two different 

causes represents the superposition of the effects of the two causes taken 

individually; in a non-linear system the summation of two elementary action 

can lead to new effects, due to interactions between constituent elements, with 

the apparition of structures and events that are unpredictable in space and time – 

determinist chaos. 

According to Mandelbrot (Mandelbrot, 1983), the fractal, as a 

geometric object, has the following characteristics: 

‒ is autosimilar: through observing a portion of the fractal there will be 

the same information as in the entire fractal; 

‒ has a simple and recursive definition as a function f(x); 

‒ has an infinite detaliation and complexity; 

‒ has a fractal dimension (D) or the Hausdorff dimension; this dimension 

measures the number of smaller diameter sets which are needed to cover a 
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figure - if this number is an integer, then the dimension is topological, otherwise 

it is fractal. 

The key terms of fractal geometry are: 

‒ initiator: the geometrical figure from which the fractal is generated, 

usually a simple geometrical figure: line, square, circle, rombus; 

‒ the construction law: the method through which the fractal is 

generated; 

‒ the generating process: effectively constructs the iterations of the 

fractal object, starting from the current iteration and applying the construction 

law on it; the process of repeating the same step generates  new generation of 

fractal sets. 

 

2. Methods 

 

With the help of fractals, we can find fractal curves that approximate a 

set of data from the human body (registered temperatures in a certain period of 

time, arterial pressure fluctuation). Fractals can be used to build models of 

unpredictable and chaotic systems like those found in cardiology; below we will 

define the possibilities of integrating and logically proving these systems. 

In the following we assume that the motions of a complex fluid’s 

entities occur on fractal curves. Therefore, a fractal space-time manifold, 

compatible with such movements, can be defined. Then, through non-

differentiability, the breaking of differential time reflection invariance is 

implied. In this framework, the common definitions of the derivative of any 

given function with respect to time (Nottale, 1989; Nottale, 2011): 
 

0 0

( ) ( ) ( ) ( )
lim lim
t t

df f t t f t f t f t t

dt t t   

   
 

 
   (1) 

 

are equivalent in the differentiable case. One passes from one to the other by the 

transformation t t   (time reflection invariance at the infinitesimal level). 

Two functions ( / )df dt  and ( / )df dt  are defined as explicit functions of t  and 

dt  in the non-differentiable case: 
 

0

0

( , ) ( , )
lim

( , ) ( , )
lim

t

t

df f t t t f t t

dt t

df f t t f t t t

dt t



 



 

    




   




     (2) 

 

The sign (+) corresponds to the forward process and (‒) to the backward one. 

It follows that, in the space coordinates dX, we can write (Nottale, 

1989; Nottale, 2011): 
 



50                                                    Nicolae Dan Tesloianu et al. 
 

 

 

d d d dt d        ζX x ζ v       (3) 
 

with v  the forward and backward average velocities 
 

0

0

x X( ) X( )
v lim

x X( ) X( )
v lim

t

t

d t t t

dt t

d t t t

dt t

  

  








  
 



 
 



               (4) 

 

and ξd   a measure of non-differentiability (a fluctuation which is induced by 

the trajectory’s fractal properties) with the mean 
 

ξ 0d          (5) 

 

While the velocity-concept is classically regarded as a single concept, if 

space-time, in our case, is a fractal, we must introduce two velocities ( v  and 

v ) instead of just one. This “two-values” of the velocity vector is a new, 

specific consequence of non-differentiability that has no standard counterpart 

(in the differential physics sense). 

We must note that, we cannot, however, favor v  rather than v . 

Therefore, a solution arises: to take into consideration both the forward ( 0dt  ) 

and backward ( 0dt  ) processes together. It is thus necessary to introduce the 

complex velocity (Nottale, 1989; Nottale, 2011):  
 

v v v v x x x x
V

2 2 2 2

d d d d
i i

dt dt

          
       (6) 

 

If (v v ) / 2   may be considered as a differentiable (classical) velocity, 

then the difference  (v v ) / 2   is the non-differentiable (fractal) velocity.  

By using notations x xd d  , Eq. (6) becomes: 
 

V x
2 2

d d d d
i

dt dt

     
  
 

       (7) 

 

This allows us to write a definition for the operator 
 

ˆ

2 2

d d d dd
i

dt dt dt

    
          (8) 

 

Now, we assume that the fractal curve is immersed in a 3-dimensional 

space, and that X, having the components iX ( 1,3i  ) is the position vector of a 
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point on the curve. We also consider a function (X, )f t  and the following 

Taylor series expansion up to the second order: 
 

2

( , ) ( , )

1
( , ) ( , )

2

i i i

i i i i

i i

df f X dX t dt f X dt

dX dt f X t dX dt f X t
t tX X

    

      
      

     

          (9) 

 

From here, using the notations, i idX d X  , the forward and backward 

mean values for this relation become: 
 

2
2

2
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2

1

2

i i l
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   (10) 

 

Moving forward, let us stipulate that: the mean values of the function f 

and its derivates coincide with themselves, and the differentials id X
 and dt are 

independent, and as a result the averages of their products coincide with the 

product of average. Then Eq. (10) becomes 
 

2
2

2

2 2

1
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2

1

2
i i l

i i l

f f
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f f
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   (11) 

 

and more, by using (3): 
 

2
2

2
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1
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f f
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f f
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        (12) 

 

Since the fractal properties of the trajectory, having the fractal dimension 

DF (Mandelbrot, 1983), are described by id , it is only natural to impose that 

  FD
id  be proportional with dt , i.e. (Nottale, 1989; Nottale, 2011): 

 

( ) 2FDid Ddt       (13) 
 

where D is a proportionality coefficient (the fractal non-fractal transition 

coefficient).  



52                                                    Nicolae Dan Tesloianu et al. 
 

 

We shall focus now on the mean
li dd   . If li  , this average is zero 

because of the independence of 
id  and 

ld . Therefore, by using (13) we obtain: 
 

2 1
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Now we can write Eq. (12) as: 
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2
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If we divide by dt and we do not take into consideration the terms 

containing differential factors, (15) can be reduced to 
 

(2/ ) 1
v ( ) FDd f f

f D dt f
dt t


 


    
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    (16) 

 

In this context, we will calculate ˆ /df dt . According with (8) and 

considering (16 a, b), we will have: 
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or using Eq. (6): 
 

(2/ ) 1
ˆ

( ) FDdf f
f iD dt f

dt t


    


V       (18) 

 

This relation allows us to define the fractal operator (Agop et al., 2008): 
 

(2/ ) 1
ˆ

( ) FDd
iD dt

dt t


   


V          (19) 

 

By applying the fractal operator (19) to the complex velocity (6) and 

also by accepting the scale covariance principle (Nottale, 1989; Nottale, 2011)
 

in the form: 

d̂
U

dt
 

V
        (20) 

 

the following motion equation results: 
 

 
2 1ˆ

-
DFd

iDdt U
dt t

 
 
 
 
 




     


V V
V V V =    (21) 

 

where U is an external scalar potential. Eq. (21) is a Navier – Stokes type 

equation. It can be interpreted that at any point of a fractal path, the local 

acceleration, tV , the non-linear (convective) term,  V V , the dissipative 

term, 
 2 1FD

Ddt

V  , and the external free term U  make their balance. It 

follows that the complex fluid can be assimilated to a “rheological” fluid, its 

dynamics being described by the complex velocities field, V , and by the 

imaginary viscosity type coefficient, 
 2 1FD

iDdt


. The “rheology” of the fluid 

imparts hysteretic properties to the complex fluid (the complex fluid has a 

hysteresis cycle, memory (Agop et al., 2008). 

 
3. Results and Discussions 

 

Neglecting the convection V V , Eq. (21) with const.U  can be 

written as 

 2/ 1
( ) 0FD

iD dt
t


 


=

V
V     (22) 

 

or, by separating the resolution scales 
 

(2/ ) 1
( ) 0

D
FD

FD dt
t


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

V
V     (23) 
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for the differentiable scale, and 
 

(2/ ) 1
( ) 0

D
F

D

F D dt
t


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

V
V                (24) 

 

for the fractal scale. The velocity fields can be totally separated, first by 

applying Eqs. (23) and (24) to the Δ operator, i.e. 
 

 

 

(2/ ) 1 2

(2/ ) 1 2

( ) 0

( ) 0

D
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D F

D
F

F D

D dt
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D dt
t






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


   



V V

V V

     (25) 

 

then, by substituting the dissipative terms taking into account Eqs. (23) and (24). 

Therefore the Kirchhoff-type equations (Audoly and Neukirch, 2005) result:  
 

2
(4/ ) 2 2

2

0
( )

0
FD D

F

D dt
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

V

V
        (26) 

 

For the one-dimensional case, the previous equations with the substitutions 
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4
(4/ ) 22

2
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D
F

i

x t L
D dt

L T T

V,U i
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
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      (27) 

 

take the unitary form (Audoly and Neukirch, 2005): 
 

4 2
4 2i i

24

K K
0L T



 
 


    (28) 

 

We can impose „clamping” conditions at 1   for Eq. (28): 
 

2 3
i i

2 3

K (1, ) K (1, )
0,  0

 

 

 
 

 
        (29) 

 

and for boundary conditions at 0  : 
 

i
i

K (0, )
K (0, ) 0,  0







 


     (30) 

 

These four boundary conditions in   associated with the two initial ones 
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i
0i

K ( ,0)
K ( ,0) K ,  0i







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
    (31) 

 

imply a unique solution 
i

K ( , )   to Eq. (23) – see Fig. 1. 

 

 
 

Fig. 1 ‒ Numerical solution of the Kirchhoff Eq. (52) with “clamped-free” 

unitary conditions, for a uniform initial 
i0K . 

iK (0, ) relaxes  

to zero within the first few time-steps 

 

Both the velocity field “self-similarity” through the field equation scale 

resolution independence (either the differential, or the fractal one), and its 

“interferentiality” through Kirchhoff type solutions determines the holographic 

property of the fractal medium. 

By corroborating the above stated facts, it can be affirmed that the 

autosimilarity of the transfer processes of biological compounds can be 

assimilated to that of a hologram, in the sense that in any finite volume of a 

biological liquid we will find its entire “image” (at any scale, beginning with the 

cellular one and finishing with the organ - organism one (Aronstein and Strout, 

1997)); as a consequence, we can understand the tissues and organs as repetitive 

and reproductible matrices of a basis structure, a structure that is replicative and 

regenerative depending on conditions, influenced by both the internal and 

external environments and temporo-spatially dependent on this conditions in a 

measure that is permanently variable on a time-velocity integral. Thus, by 

understanding blood as a fluid tissue moving along a cylindrical structure with a 

mucous wall (Taylorian movement of a fluid inside another) we can explain 

with a deterministic mathematical model the physiopathological changes and 

the diversity of effects they have on the cardiovascular system; moreover, by 
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reducing the hologram paradigm from an universal scale to a microscopical and 

molecular scale, we can understand, speculatively at this moment, the healing 

processes as a holographic result, the healthy cells from the periphery of the 

affected area containing all the information which is necessary for the 

reproduction through autosimilarity of the destroyed cells. All the information 

held by the whole unit is contained in each part of a hologram contains; recent 

discoveries made in two different fields by the cuantic physics expert David 

Bohm (London University) and the neurophysiologist Karl Pribarm (Stanford 

University) determined the emergence of the idea that the universe is a gigantic 

hologram created by the human mind, in conformity with mathematical models. 

Pribarm believes that the brain itself is a hologram (Pricop et al., 2013), 

considering that information is not codified in neurons, but in nervous impulse 

configurations which intersect at this level. Basically, the de Broglie hypothesis 

about the wave-corpuscle duality is reconfirmed (de Broglie, 1964). 

 
4. Conclusions 

 

Each of the information units mentioned above seem to be 

interconnected with all the others, this coresponding to the intrinsic 

characteristic of the hologram. As reality is only a holographic illusion, Pribram 

affirms that the old paradigm according to which the brain produces conscience 

and conscious thoughts can no longer be true. Moreover, the researcher affirms 

the reverse (Luis, 1993): conscience and conscious thoughts create the physical 

appearance of the brain, of the human body and of everything that surround us 

and are perceived as being real. In such a context, information seems to play an 

essential role (Onicescu, 1966). Thus, at this moment it has been proved and has 

been accepted that every fluid carrying information (such as blood) can play the 

role of a laser ray. Unlike photography, holograms contain information that is 

not strictly located in certain points, but can be considered ”global’, distributed 

along the entire surface of the hologram. 
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CARACTERISTICI ALE FRACTALITĂȚII ÎN 

 DINAMICILE SÂNGELUI 

 

(Rezumat) 

 

Prin asimilarea sângelui cu un țesut fluid ce se deplasează printr-o structură 

cilindrică cu pereți din mucus (mișcare de tip Taylor a unui fluid în interiorul altul fluid) 

putem explica, utilizând un model matematic determinist, modificările fiziopatologice și 

efectelor lor diverse asupra sistemului cardiovascular. Mai mult, prin reducerea 

paradigmei holografice de la o scară universală la scară microscopică/moleculară, 

putem analiza, cel puțin speculativ, procesele de vindecare ca un rezultat al holografiei, 

celulele sănătoase de la periferia zonei afectate conținând toate informațiile necesare 

reproducerii prin autosimilaritate a celulelor afectate. 
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