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Abstract. By using mathematical formulations specific to nonlinear 

dynamics, we devise an original method for the evaluation of atrial fibrillations. 
Our results can be used for developing new medical diagnosis procedures and 
new ways of tracking heart diseases, based on specific patterns.   
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1. Introduction 
 
Almost 60 years ago, Noble developed a first cardiac cell model based 

on modified Hodgkin-Huxley equations describing the long-lasting action and 
pace-maker potential of the Purkinje fibers of the heart (Noble, 1960). Since 
then, several nonlinear models of electrophysiological dynamics were 
developed with increasing complexity and specificity (Nayak et al., 2018; 
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Vagos et al., 2018)). These models suggested the use of nonlinear method to 
investigate the electrical activity of the heart. In their pioneering works, 
Guevara et al. (Guevara et al., 1981) and Ritzenberg et al. (Ritzenberg et al., 
1984) introduced nonlinear approaches to heart rhythm analysis and provided 
evidence of nonlinear behavior in the electrocardiogram. Methods borrowed 
from the theory of chaos control were successfully applied for the termination 
of the repolarization alternans to prevent alternans-induced ventricular 
tachycardia of fibrillation (Christini et al., 2001) and control of electrical 
turbulence in the heart (Luther et al., 2011). 

In a normal heart, the electrical phenomenon originated from the 
cardiac activity triggers the mechanical phenomenon with a 0.02 second delay. 
Tracking and recording these phenomena may provide important information 
regarding the genesis, propagation and development of cardiac activity (Haulica, 
2007). Electrocardiography records variations in the electrical potential in the 
myocardium during a cardiac cycle and represents them as graphic deflections 
or electrocardiogram waves. Shifts in the activity of different regions are not 
made simultaneously, but in a predetermined order. Each wave, segment and 
complex registered by the device is equivalent to the depolarization and 
repolarization of a certain area or chamber of the heart (P waves - atrial 
depolarization; PQ segment – conduction of the depolarization stimulus; QRS 
complex represent ventricle depolarization, ST segment – ventricle 
repolarization; T waves – ventricle repolarization) (Badescu et al., 2016).  

A normal ECG is represented by a complex of P waves, followed by 
QRS complex and T wave respecting certain parameters of height, depth, with, 
rhythm and heart rate.  

In case of arrhythmias, the normal rhythm of the myocardium is 
affected (frequency, regularity or both). Electrophysiologically, rhythm 
disorders such as fibrillation (characterized by numerous ectopic centers that 
discharge impulses at a very high rate) would result in an abnormal regional 
depolarization (atrial and ventricle fibrillation) therefore interfering with the 
normal cardiac activity. Depending on the fibrillation type the main diagnostic 
criteria on a 12 lead ECG may vary (atrial fibrillation: absent P waves 
associated with small “f” fibrillation waves, irregular with variable amplitude 
and a very high frequency, unequal QRS complexes but with normal 
morphology; ventricle fibrillation: absence of P and T waves and replacement 
of the QRS complex with fast electrical waves that present morphological, 
amplitude and duration modification that vary during recording) (Badescu et 
al., 2016).  

The nonlinear dynamics investigation of the electrocardiogram time 
series can offer important information also for other physiological processes 
than those specific to cardiology. Thus, experimental results revealed that the 
heartbeat rate signal present a low-dimensional chaotic state during an epileptic 
seizure, while before and after the seizure event it presents a complex, aperiodic 
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behavior (Su et al., 2008). Also, Young and Benton associated heart rate 
complexity with ratings of mood, focused attention reaction times, inhibition, 
and decision time, concluding that nonlinear rather than linear methods of 
summarizing the heart rate times series offers new perspective in the relation 
between brain functions and its behavior (Young and Benton, 2015). 

In this paper we devise a new method for the evaluation of atrial 
fibrillations, by using mathematical procedures from nonlinear dynamics. 

 
2. Methods 

 
We analyzed ECGs obtained from the open acces PhysioNet database 

(physionet.org). This is a free collection of physiological signals 
(PhysioBank), recorded from a wide range of patients, as well as specialized 
software for viewing and analyzing them. Thus, this database aims to 
stimulate current research in analyzing complex (often nonlinear) biomedical 
and physiological signals. 

Nonlinear dynamics proposes a vast array of methods for signal 
analysis. Selecting one is done taking into account the signal specifics and the 
information one wants to obtain. We will mention only the methods employed 
in this work. 

The Lyapunov exponents associated to a phase space trajectory of a 
dynamic system are a measure of the average expansion or contraction rate of 
trajectories around it, i.e., trajectories that arise from very close initial 
conditions (Arce, 2004). These exponents are asymptotic quantities, locally 
defined as follows. Let us consider ( )x t  the trajectory in the phase space of a 
dynamic system, which starts from an initial condition very close to 0x : 
( ) 00' 'x t x= = . We define the distance between the two trajectories as 

( ) ( ) ( )'y t x t x t= − . Considering that this distance varies exponentially with time 
(this hypothesis must be verified for each case in particular): 

 
( ) ( )0 ty t y eλ=       (1) 

 
The exponent which appears in this relation, λ , is called the Lyapunov 

exponent. If the phase space is n-dimensional (there are n independent 
quantities describing the state of the system), then we can define a Lyapunov 
exponent for each dimension, therefore n Lyapunov coefficients exist, which, 
together, form the Lyapunov spectrum (Nayfeh and Balachandran, 2004). If the 
Lyapunov exponent is positive, it means that there is a high divergence of initial 
trajectories from neighbouring initial conditions, this being characteristic to 
chaotic dynamic systems. We usually don’t need to calculate all the Lyapunov 
exponents, because there is a fast algorithm for calculating the highest 
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Lyapunov exponent. If this is positive, the system is chaotic; if it is negative, it 
means that all the other Lyapunov exponents are negative, therefore the system 
is not chaotic.   

The phase space for a system dynamic is usually higher than 3, so that 
its graphical representation is impossible. This type of spaces can only be 
visualized by using projection on subspaces of 3 dimension. Eckman, 
Kamphorst, and Ruelle developed a method for visualizing the recurrence of 
state ix , in a phase space (Eckmann et al., 1987). Their method allows 
investigating the system’s trajectory in a m-dimensional space by representing 
its two-dimensional recurrences. The recurrence of a state corresponding to the 
moment it  at a different time jt  can be graphically presented by a two-
dimensional square matrix, in which the dark coloured points represent the 
recurrence. This is called a recurrence graphic, and it can be defined by the 
following relation: 

 

( ) ( ) ( )( ) ( ), , , , 1,...,mR i j r i r j r i R i j NΘ ε= − − ∈ =
  

   (2)  

 
where N  is the number of ix  states considered, ε  is a threshold distance, and 
Θ  is the Heaviside step function (Arce, 2004). The recurrence graphic shows 
both large scale (topology) and reduced scale (texture) characteristics. Topology 
offers a global impression, which can be characterized as homogenous, period, 
drift, or disrupted. 

In Fig. 1 recurrence maps are drawn, corresponding to “white” noise 
(random signal), harmonic oscillations (perfect sinusoidal), Brownian motion, 
and to a healthy patient’s ECG (Perc, 2005). 

For the quantitative estimation of the structural degree of the recurrence 
map, the spatial-temporal entropy is calculated, measuring both the spatial and 
temporal structural degrees. It compares the global distribution of colours along 
the whole recurrence map with the distribution of colours along each diagonal 
of the map (Aflori and Dimitriu, 2006). The result is normed and presented in 
the form of a maximum value percentage, corresponding to a random signal. A 
100% spatial-temporal entropy indicates the absence of any structure (uniform 
colour distribution), while a value of 0% for the same entropy means a perfect 
structuralizing (distinct model in the map, total predictability) (Aflori and 
Dimitriu, 2006). 

In most experimental situations it is very hard to establish the 
independent coordinates that describe a systems’ dynamics, necessary for 
building the phase space. For this reason, several alternative methods for 
constructing such a space have been developed, the most well-known one being 
the delay time method. 
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Fig. 1 ‒ Recurrence maps corresponding to white noise (a), harmonic oscillations (b), 

Brownian motion (c), and a healthy patient’s ECG (d). 
 

Experimentally, most often a single system variable is measured: 
 

( ) ( )0n ss s t s t nτ= = +       (3)  
 
where sτ  is the sampling time of the instrument used for measuring the s  
variable. A series of paper written at the end of the 20th century suggested that 
the measurement of a single signal could be sufficient to “reconstruct” a phase 
space in which the system’s dynamics is equivalent with the one from the 
original phase space. Packard et al. demonstrated this equivalency through 
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numerical simulations (Packard et al., 1980), while Takens demonstrated it with 
mathematical rigor (Takens, 1981). As a consequence of this equivalence, the 
attractor from the reconstructed phase space has the same invariants (like the 
Lyapunov exponents) as the original one.  

In order to reconstruct the independent coordinates of the phase space, 
Packard and co. proposed using the signal’s derivatives (Packard et al., 1980). 
In this way, the derivates can be approximated with the finite differences: 

 

( )
( ) ( )0 0

0

1s s
s

s

s t n s t nds t n
dt

τ τ
τ

τ
+ − + −  + ≅    (4) 

 

( )
( ) ( ) ( )2

0 0 0
02 2 2

1 2 1s s s
s

s s

s t n s t n s t nd s t n
dt

τ τ τ
τ

τ τ
+ + − + + −      + ≅ +                (5) 

 
From the above-written formulas it can be observed that, at each new 

differentiation, new information already contained in the measured signal is 
added, but at time moments delayed with a multiple of the delay time. This 
observation lead Packard and co. (Packard et al., 1980), Takens (Takens, 1981), 
and Ruelle (Ruelle, 1989) to the conclusion that there is no need for derivatives 
in order to compose a coordinates system that describes the structure of orbits 
from the phase space. Instead, one can directly use the ( )s t nτ+  variables, 
where 1 2n , ,...,d= , and skτ τ=  is an appropriately chosen delay time. We can 
define, thus, the so-called delayed coordinates vectors as: 

 

( ) ( ) ( ){ }0 0 0 1
T

n s s s s sy s t n , s t n k , ..., s t n k dτ τ τ τ τ  = + + + + + −           (6)   

or 

( ){ }2 1n n k n k n d k

T
n ,y s , s , s ..., s+ + + −=      (7) 

 
The space constructed with the ny  vectors is called the reconstructed 

phase space. According to Takens (Takens, 1981) and Mané (Mané, 1981), the 
geometrical structure for the dynamics of the systems for which the variable s  
has been measured can be observed in the reconstructed d-dimensional 
Euclidian space, if 2 1ad d≥ + , where ad  is the attractor’s dimension. In 1991, 
Sauer et al. had shown that it is sufficient for 2 ad d≥ . The parameter τ  is 
called the delay time, and the integer d  is called the immersion dimension. 

The immersion dimension must be large enough so that no intersection 
of orbits reconstructed with themselves (false intersections) should appear. 
There are several ways for determining this dimension, the most often used one 
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being the systems’ invariants saturations and the false nearest neighbours 
method (Nayfeh and Balachandran, 2004).  

In theory, the delay time can be arbitrary chosen if we have an infinity 
of data, not altered by noise. As this is improbable in practice, the value of the 
delay time must be chosen with care. If this value is too low, the trajectories in 
the reconstructed phase space will clutter towards the main diagonal, due to the 
fact that the delayed coordinates are excessively correlated. On the other hand, 
if the chosen value is too high, an artificial decorrelation can appear, and the 
delayed coordinates become uncorrelated. The most often used methods for 
determining the delay time are the autocorrelation function, the average mutual 
information, and the generalized correlations integral methods (Nayfeh and 
Balachandran, 2004).   

 
3. Results and Discussions 

 
In Fig. 2 the graphical representations of ECG fragments (with a 5 s 

duration) corresponding to pre-crisis, first atrial fibrillation (AFIB 1), atrial 
flutter (AFL), second atrial fibrillation (AFIB 2) and post-crisis, respectively, 
are presented for the analyzed ECG presented in Methods.   
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Fig. 2 ‒ ECG fragments corresponding to periods of pre-crisis (a), first AFIB (b), 

 AFL (c), second AFIB (d), and post-crisis (e). 
 

 
Fig. 3 ‒ Fourier spectra for amplitudes of signals from Fig. 2. 
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For the case shown in Fig. 2, we observe that in pre-crisis and post-
crisis the pulse is normal. In AFIB1, we can see that the heart rate slowly 
increases, then it shows a much rapid increase in AFL, slowly decreasing 
afterwards in the AFIB2.  

In the following, the results obtained by applying the mentioned 
nonlinear mathematical procedures are presented (Agop et al., 2004; Agop and 
Murgulet, 2007; Agop et al., 2008; Camm et al., 2009; Colodin et al., 2009; 
Iaizzo, 2015; Stoler, 1970; Stoler, 1971). 

Fig. 3 shows the Fourier spectra for amplitudes of signals from Fig. 2. 
The Fourier spectra shown above reveals to us the following: i) during 

pre-crisis (especially when compared to post-crisis), the signal shows a detectable 
noise, meaning that heart beats start to slowly become irregular, anticipating a 
crisis; ii) the graphs for AFIB crisis 1 and AFIB crisis 2 display the chaotic 
behavior of the heart (heart rate) during these crisis episodes. This can be 
explained through the fact that, during atrial flutter, the heart's upper chambers 
(atria) beat too quickly. This leads to a fast, but usually regular, heart rhythm. The 
specific Fourier spectrum confirms these findings. In post-crisis, the noise starts 
to decrease, thus showing a return to a relative normal and regular heartbeat.  

Fig. 4 shows the systems dynamics attractors in the phase space 
reconstructed trough the delay time method, determined using the auto-
correlation function. 
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Fig. 4 ‒ Systems dynamics attractors in the reconstructed phase 

 space corresponding to signals from Fig. 2. 
 

Let us observe the clear differences between the geometry (shape) of 
attractors from Figure 3, corresponding to the two atrial crises (AFIB 1 and 2), 
and also the notable differences between pre-crisis and post-crisis. Thus, we can 
guess that a defibrillator was used to restore normal heart rhythm. 

 
4. Conclusions 

 
Our results show that, by applying nonlinear dynamics mathematical 

procedures in the heart electrical activity analysis, we can obtain valuable 
information with respect to fibrillation crises and, possibly, other cardiac 
afflictions.  

Therefore, we believe that our method can be used for developing new 
medical diagnosis models and also for tracking the evolution of heart diseases. 
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UN NOU MODEL TEORETIC PENTRU EVALUAREA 
 FIBRILAȚIILOR ATRIALE 

 
(Rezumat) 

 
În prezenta lucrare se dezvoltă o nouă metodă de evaluarea a fibrilațiilor 

atriale, pe baza unor proceduri matematice specifice dinamicii neliniare. Această 
metodă ar putea fi utilizată pentru dezvoltarea de noi modele pentru diagnosticul și 
monitorizarea bolilor cardiace, folosind tipare specifice. 

 


