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Abstract. The aim of this paper is to analyze the Gordon equation for the 

Mannheim-Kazanas metric which contains, besides the Schwarzschild solution, 
two other additional contributions. This metric is offering an explanation for the 
flat galactic velocity curves, without requiring dark matter. The test particle 
orbiting the galaxy center will feel not only the matter of the Galaxy, but also the 
cosmological background which is acting like a perturbation. 
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1. Introduction 
 
For spiral galaxies, the so-called rotation curves, defined as the circular 

velocities around the nucleus, are the basic tool for deriving the mass 
distribution. Observations performed more than forty years ago, have shown 
that the tangential velocity as a function of the equatorial radius does not follow 
the familiar Keplerian decline (Rubin et al.,1980). Thus, instead of decreasing 
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with the square root of the radius, the rotation curves are universally flat for 
massive galaxies and are monotonically increasing for the less massive ones 
(Persic and Salucci, 1995). 

The difference between the galaxy mass given by the luminosity and the 
mass predicted by the rotation velocities has been seen as a strong evidence for 
the existence of spherical haloes of dark matter surrounding the spiral galaxies 
and substantial efforts have been directed towards detecting this type of matter. 

In the same time, motivated by the lack of tangible evidence for the 
existence of the dark sector, different theories have been proposed, starting with 
the modification of the Newtonian dynamics introduced by Milgrom (1983). 

As an alternative to Einstein’s General Relativity, the Conformal 
Gravity (CG) is a reliable candidate and, similarly to Einstein’s General 
Relativity, it uses a metric to describe the curved spacetime. One of the most 
promising results in CG is the Mannheim-Kazanas (MK) vacuum solution 
(Mannheim and Kazanas, 1989), because it provided a geometrical explanation 
for the flat galactic rotational curves (Mannheim and O’Brien, 2012). The MK 
metric contains a linear contribution, rγ , which has to be comparable with 
2 /M r  to effectively raise the rotation curves above Newtonian gravity 
predictions. 

In the last years, the MK metric was tested on a large number of 
galaxies, including the dwarf ones, which are considered suitable targets for 
indirect dark matter detection (Ahnen et al., 2018).  In this respect, the MK 
metric has provided fully acceptable fits, without the need of dark   sector 
(O’Brien and Mannheim, 2012). 

The last part of our work is dedicated to the Gordon equation. The 
massive bosons can be seen as test fields evolving in the MK spacetime. In the 
case of the Schwarzschild metric, the Gordon equation is satisfied by the 
Heun confluent functions (Vieira and Bezerra, 2016). The particle’s quantized 
energy spectrum is related to the quasinormal modes and is completely 
determined by the black hole’s mass. However, in the case of the MK metric, 
the Gordon equation does not admit an analytical solution and one has to use a 
perturbative approach.  

 
2. The Mannheim-Kazanas Solution 

 
The Mannheim-Kazanas (MK) metric is a vacuum solution of the 

equations of conformal gravitation and has the expression (Mannheim and 
Kazanas, 1989): 

                                                 2
00

21g r r
r
β γ λ= − + − ,                                    (1) 
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where β , γ  and λ  are integration constants. With Mβ =  in the expression 
(1), one may notice that linear and quadratic contributions have been added to 
the familiar Schwarzschild metric. 

In the original work of Mannheim and Kazanas (Mannheim and 
Kazanas, 1989), the value of the positive constant γ  was considered 
comparable to the inverse of the Hubble length. Later, it has been taken as 

0 Gγ γ γ= + , where 28 1
0 3 10 mγ − −= ×  and * *

G Nγ γ= , with * / SN M M= , 
* 39 15.42 10 mγ − −= × , SM is the solar mass  and M  is the galaxy mass. The 

parameter λ , whose value is 50 29.54 10 mλ − −= × , is universal for all galaxies 
and is due to the inhomogeneous material in the Universe (Mannheim and 
O’Brien, 2012). 

By neglecting the λ  term, one may write the metric (1) in the form:  
 

                                                    00
21 Mg r

r
γ= − + ,                                     (2)  

 
where the linear term proportional to the radius is the one capable to explain the 
flat galactic rotational curves, in the outer region, where the Newtonian term is 
falling off. On the other hand, for the Sun whose distance from the Galactic 
Center is 0 8R kpc≈ , the term proportional with γ  is very small and it cannot 
compete with the Newtonian contribution. 

For *N  solar masses in the luminous galaxy whose mass is given 
by ( )* /SM N M M L L= = , the potential is computed by integration over the 
visible galactic mass distribution. 

For the particular metric (2), one can write down the following 
expression of the potential: 

                                             
2

M rV
r

γ
= − + ,                                       (3)  

where 

                                     * *
0 0

0

1 MN
M

γ γ γ γ
 

= + = + 
 

,                           (4)  

with 
100

0 * 5.6 10S SM M Mγ
γ

= = × . 

 
Thus, for galaxies with 105.6 10 SM M<< × , we may consider 0γ γ≈ . 
As it is known, the circular velocity at the galactic plane can be 

computed as: 
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                                                    2 dVv r
dr

= ,                                             (5) 

 
where the gravitational potential, V , has multiple components, namely the 
central black hole, the bulge, the disk and the dark halo. However, one has to 
find a suitable mass distribution function to agree with the observations. 

In Newtonian gravity, the tangential velocity of a test particle in 
circular motion around      the central mass has the simple expression: 

 

Mv
r

= . 

 
In General Relativity, the effective potential and the velocity of a 

particle moving around the galactic center are derived from the timelike 
geodesics. Thus, we write the spacetime  line element as 

 

                   ( ) ( ) ( ) ( )
2

2 2 22 2 2 2
00

00

sin
dr

ds r d d g dt d
g

θ θ ϕ τ = + + − = −  ,         (6) 

 
where τ is the proper time and g00 is given in (1). For a particle in the equatorial 
plane ( )0θ ϕ= =   with the conserved energy 
 

 00E g t=  , 
 
where dot means the derivatives with respect to τ  , the relation (6) becomes 
 

 2 2
00r E g= − . 

 
By comparing the above relation with the expression of the equation of 
motion for a test particle with unit mass, 
 

 
2 2 1

2 2 eff
r E V−

= −


, 

 
one can identify the effective potential 
 

                                             21 2
2eff

MV r r
r

γ λ = − + −  
.                                (7) 

 
Thus, the velocity defined in (5) reads 
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2 2

2
dV M rv r r
dr r

γ λ= = + − , 

 
where, for galactic systems, the effect of the linear term may be of the same order 
of magnitude with the Newtonian one. For a typical galaxy with 1110 SM M= , 
these two terms are almost equal for * 2 / 20r M kpcγ= ≈ .  Thus, for the 
outermost regions, the linear term will become dominant. 

In the case of the Milky Way which is hosting, in the Galactic Center, a 
massive black hole, the total mass, including the dark halo up to 150kpc , is 

113 10 SM M= ×  (Sofue, 2015). At such large distances, the contribution 
2rλ should also be taken into account. 

Since 2v  should be a positive quantity, the ratio ( )/ 2γ λ  can be seen as 
a natural limit on the size of galaxies, in the sense that beyond this distance 
there could no longer be any bound galactic orbits.  For a small galaxy with 

0γ γ= , this expression is around ( )0 / 2 50kpcγ λ ≈ . One has to point out that 
measurements of the dynamical mass of dark halos in most galaxies are made at 
radii of 20 30r kpc≈ − . 

 
3. The Gordon Equation 

 
Let us consider a test particle evolving in the spacetime endowed with 

the metric function (1), with Mβ = . The inclusion of the terms proportional to 
r  and 2r  in the Schwarzschild solution will weakly break the asymptotic 
flatness of the Schwarzschild metric resulting in a constant inward acceleration.  
In view of the proposed numerical values of γ   and λ , the terms rγ  and 2rλ  
will come out to be order unity at the edge of the observable universe. Hence, at 
length scales much smaller than that, they can be treated as perturbations. 

The corresponding horizons are given by the equation 00 0g = , namely 
these are the solutions of the cubic equation: 

 
 3 2 2 0r r r Mλ γ− + + − = . 

 
For the universal values of the parameters γ and λ  proposed by Mannheim and 
Kazanas, the discriminant: 
 

( ) ( )

3 2 2 3 2 2

2 2 2

18 4 4 27
108 4 1 9 1 8

abcd b d b c ac a d
M M Mλ γ λ γ γ

∆ = − + − −

= − + + + +
 



36                             Vitalie Lungu and Andromeda-Iustina Dariescu 
 

 

is a positive quantity and thus one has three real solutions. One of the two 
positive roots is close to the Schwarzschild horizon, 
 

 [ ]2 1 2hr M Mγ≈ − , 
 
while the other one is the de Sitter-like cosmological horizon 
  

1 /cr λ≈ . 
 
By solving the Gordon equation, one can find important properties of 

the astrophysical object. For values of r R> , the corresponding Gordon 
equation is 

                            
2

2 2
00 ,2 2 2

00

1 1 1 0r g
r r r r g tθ ϕ µ∂ ∂Φ ∂ Φ  + ∆ Φ − − Φ = ∂ ∂ ∂ 

,          (8) 

where  

 
2

, 2 2

1 1sin
sin sinθ ϕ θ

θ θ θ θ ϕ
∂ ∂Φ ∂ Φ ∆ Φ = + ∂ ∂ ∂ 

. 

 
One may employ the variables separation 
 

                                               ( ) ( ),m i t
lR r Y e ωθ ϕ −Φ = ,                                    (9) 

 
where the radial function R is the solution of the equation 
 

                           ( )
2

2 2 2
00

00

1 0d dRr g r l l R
dr dr g

ω µ
    + − − + =        

,            (10) 

 
where 00g  has the expression (1). The above equation has an analytical solution 
only in the massless case and for 0λ = (Dariescu and Dariescu, 2021). 

The absolute value of the numerical solution of the Eq. (10) is 
represented in the Fig. 1. One may note the dominant maximum just outside the 
horizon and the presence of a plateau for large values of the radial coordinate. 

In the case of the Schwarzschild metric, which is the typical static 
solution for the exterior spacetime of a galaxy with the mass parameter equal 
to its total mass, the Gordon equation can be exactly solved, its solution 
being given by the Heun confluent functions (Ronveaux, 1995; Slavyanov  
and Lay, 2000). 



Bul. Inst. Polit. Iaşi, Vol. 67 (71), Nr. 1, 2021                                      37 
 

 
Fig. 1 ‒ The absolute value of the solution of Eq. (10) for the MK metric. 

 
For the metric function 

00
21S Mg

r
= − , 

 
the radial function, SR , has the expression 
 

                                       ( ) [ ]2 2 , , , , ,
x

SR r Ae x HeunC x
α β

α β γ δ η= ,                (11) 
 

where the Heun confluent functions have the variable ( )1 / 2x r M= −  and the 
parameters      

                                  
( ) ( )

2 2

2 2 2

4 ,  4 ,  0,

4 2 ,  1 .

i iM

M l l

α ω µ β ω γ

δ µ ω η δ

= − − = ± =

= − = − − +
                   (12)  

 
By inspecting the Fig. 2, where the absolute value of the relation (11) is 

represented, one may notice a series of decreasing maxima, as the variable x  is 
increasing. Unlike the previous case, the radial function has an oscillatory 
behavior, with zero minima. 
 

 
Fig. 2 ‒ The absolute value of (11) for the Schwarzschild metric. 
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For the asymptotic behavior at large values of r, where the linear and 
quadratic terms   must be taken into account as perturbations, one may use the 
formula (Slavyanov and Lay, 2000) 

 

                   

[ ]
2 2

2 2
1 2

2
2 2 2 2

1 2

2
2 2

, , , , ,

sin ln ,
2

x

x x x

x

HeunC x D x D e x

e x D e x D e x

xCe x i i x

β γ δ β γ δ
αα α

δ δα β γ α α
α α

α β γ

α β γ δ η

α δ ϕ
α

+ + + +   − + − −   −   

+ +
−− − −

+ +
− −

≈ +

 
= + 

 

 = − + +  

        (13) 

 
where ϕ is the phase shift. 

Using the parameters (12) in the above expression, the zero-order 
solution corresponding to the outgoing mode is given by 

 

                                      
( )

( )
2 2

,
iM p

ipr m i tp
lm l

A e x Y e
r

ω
ωθ ϕ

+
−Φ ≈   ,                      (14) 

 

where 2 2p ω µ= − .    
             In a perturbative approach, the expression (14) can be used as a zero 
order solution to compute the transitions amplitudes initiated by the linear and 
quadratic metric’s contributions (Dariescu et al., 2017). 

Thus, for the metric function (1) written as 
 

 ( )00 00
Sg g h r= + , 

where  

( ) 2
00

21 ,  1S Mg h r r r
r

γ λ= − = − << , 

 
the Eq. (8) can be put in the form 
 
                                                        D VΦ = Φ ,                                               (15) 
with  

                                    
2

2 2
00 ,2 2

00

1 1S
SD r g

r r r g tθ ϕ µ ∂ ∂ ∂ = + ∆ − −  ∂ ∂ ∂  
              (16) 

and 
  

           ( ) ( )
( )( )

2 3
4 3

2 2 3

1
2 2

r r
V r r

r r r r M r M r r
ω γ λ

λ γ
γ λ

− ∂ ∂ = − +  ∂ ∂ − − + −  
.         (17) 



Bul. Inst. Polit. Iaşi, Vol. 67 (71), Nr. 1, 2021                                      39 
 

Let us consider φ χΦ = + , where φ is the homogeneous solution (14), 
to the zero-order equation 

0Dφ = . 
 
This can be used to compute the first-order transition amplitude, 
 

( ) ( ) ( )A x V x x dφ φ= Ω∫  
 
with the integration measure 
  

2 sind r dr d d dtθ θ ϕΩ =  
 
and the potential operator (17). 
 

4. Conclusions 
 
Even though the metric (1) is not a standard solution obtained in 

General Relativity, in the last years, it has received considerable attention. This 
is due to the fact that it offers an explanation for flattened galactic velocity 
curves and effectively deal with the interpretation of the observed declination 
from the Hubble law requiring dark energy. 

In the metric (1), one may notice besides the Schwarzschild de-Sitter 
solution, the linear term rγ , which is a special feature of the fourth order theory 
and has consequences at galactic distance scales. 

The integration constants M  , γ  and λ  have been fixed by fitting the 
observed galactic rotation curves. The only free parameter in the MK metric is 
the mass to light ratios, /M L , of the luminous optical disk of each galaxy. 

The simple metric expression (2), with 0γ γ= , can be used for a large 
range of galaxies, as for example the dwarf galaxies, where the parameter * *N γ  
is very small compared to 0γ  and also, at their distance scale, the λ  term 
contribution is not significant. Contrary to the Schwarzschild solution, in the 
metric (2), the falling Newtonian term is competing with the rising linear one 
and a region of flatness can appear, at * 2 /r M γ= . 

A main part of the paper is dealing with the Gordon equation describing 
a particle moving in the spacetime described by the metric function (1). Since 
the analytical solution can be derived only for the Schwarzschild metric, we 
have used a numerical approach. By inspecting the Fig. 1, one may notice that, 
contrary to the Schwarzschild case given in the Fig. 2, the absolute value of the 
wave function preponderantly remains constant as the radius increases. This 
agrees with the observed data of velocities for spiral galaxies. In both cases, the 
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density of probability vanishes on the black hole horizon and has a maximum 
just outside the horizon.  

For rangers of r  where the linear and quadratic terms can be treated as 
perturbations, one may use the homogeneous solution (14) to compute the first 
order transition amplitudes. Such investigations on the motions of particles in 
the spacetime endowed with the MK metric is providing a way to detect the 
presence of the global de Sitter-like component. 
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PERTURBAREA MIȘCĂRII KEPLERIENE ÎN 

 GALAXIILE SPIRALE 
 DESCRISE DE METRICA MANNHEIM-KAZANAS 

 
(Rezumat) 

 
Scopul acestei lucrări este analiza ecuației Klein-Gordon pentru metrica 

Mannheim-Kazanas, care conține, pe lângă soluția Schwarzschild, un termen linear și 
unul pătratic. Această metrică oferă o explicație pentru curbele de rotație plate ale 
galaxiilor spirale, fără ipoteza materiei întunecate. Asupra particulei test, care orbitează 
centrul galaxiei, acționează nu numai masa galactică ci și componenta cosmologică de 
fond, care poate fi tratată ca o perturbație. 
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